Skip to main content

High-Resolution Characterization of DNA/Protein Complexes in Living Bacteria

  • Protocol
  • First Online:
Bacterial Chromatin

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1837))

Abstract

The occurrence of DNA looping is ubiquitous. This process plays a well-documented role in the regulation of prokaryotic gene expression, such as the Escherichia coli lactose (lac) operon. Here, we present two complementary methods for high-resolution in vivo detection of DNA/protein binding within the bacterial nucleoid by using either chromatin immunoprecipitation combined with phage λ exonuclease digestion (ChIP-exo) or chromatin endogenous cleavage (ChEC), coupled with ligation-mediated polymerase chain reaction (LM-PCR) and Southern blot analysis. As an example we apply these in vivo protein-mapping methods to E. coli to show direct binding of architectural proteins in the Lac repressor-mediated DNA repression loop.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adhya S (1989) Multipartite genetic control elements: communication by DNA loop. Annu Rev Genet 23:227–250

    Article  CAS  PubMed  Google Scholar 

  2. Garcia HG, Grayson P, Han L, Inamdar M, Kondev J, Nelson PC, Phillips R, Widom J, Wiggins PA (2007) Biological consequences of tightly bent DNA: the other life of a macromolecular celebrity. Biopolymers 85(2):115–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Peters JP 3rd, Maher LJ (2010) DNA curvature and flexibility in vitro and in vivo. Q Rev Biophys 43(1):23–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Peters JP, Becker NA, Rueter EM, Bajzer Z, Kahn JD, Maher LJ 3rd (2011) Quantitative methods for measuring DNA flexibility in vitro and in vivo. Methods Enzymol 488:287–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bellomy GR, Mossing MC, Record MT Jr (1988) Physical properties of DNA in vivo as probed by the length dependence of the lac operator looping process. Biochemistry 27(11):3900–3906

    Article  CAS  PubMed  Google Scholar 

  6. Muller J, Oehler S, Muller-Hill B (1996) Repression of lac promoter as a function of distance, phase and quality of an auxiliary lac operator. J Mol Biol 257(1):21–29

    Article  CAS  PubMed  Google Scholar 

  7. Becker NA, Kahn JD, Maher LJ 3rd (2005) Bacterial repression loops require enhanced DNA flexibility. J Mol Biol 349(4):716–730

    Article  CAS  PubMed  Google Scholar 

  8. Bond LM, Peters JP, Becker NA, Kahn JD, Maher LJ 3rd (2010) Gene repression by minimal lac loops in vivo. Nucleic Acids Res 38(22):8072–8082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Becker NA, Peters JP, Maher LJ 3rd, Lionberger TA (2013) Mechanism of promoter repression by lac repressor-DNA loops. Nucleic Acids Res 41(1):156–166

    Article  CAS  PubMed  Google Scholar 

  10. Becker NA, Greiner AM, Peters JP, Maher LJ 3rd (2014) Bacterial promoter repression by DNA looping without protein-protein binding competition. Nucleic Acids Res 42(9):5495–5504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mogil LS, Becker NA, Maher LJ 3rd (2016) Supercoiling effects on short-range DNA looping in E. coli. PLoS One 11(10):e0165306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Becker NA, Kahn JD, Maher LJ 3rd (2007) Effects of nucleoid proteins on DNA repression loop formation in Escherichia coli. Nucleic Acids Res 35(12):3988–4000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Becker NA, Kahn JD, Maher LJ 3rd (2008) Eukaryotic HMGB proteins as replacements for HU in E. coli repression loop formation. Nucleic Acids Res 36(12):4009–4021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sebastian NT, Bystry EM, Becker NA, Maher LJ 3rd (2009) Enhancement of DNA flexibility in vitro and in vivo by HMGB box A proteins carrying box B residues. Biochemistry 48(10):2125–2134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Czapla L, Peters JP, Rueter EM, Olson WK, Maher LJ 3rd (2011) Understanding apparent DNA flexibility enhancement by HU and HMGB architectural proteins. J Mol Biol 409(2):278–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Becker NA, Maher LJ 3rd (2015) High-resolution mapping of architectural DNA binding protein facilitation of a DNA repression loop in Escherichia coli. Proc Natl Acad Sci U S A 112(23):7177–7182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rhee HS, Pugh BF (2011) Comprehensive genome-wide protein-DNA interactions detected at single-nucleotide resolution. Cell 147(6):1408–1419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rhee HS, Pugh BF (2012) ChIP-exo method for identifying genomic location of DNA-binding proteins with near-single-nucleotide accuracy. Curr Protoc Mol Biol Chapter 21:Unit 21 24

    Google Scholar 

  19. Pfeifer GP, Steigerwald SD, Mueller PR, Wold B, Riggs AD (1989) Genomic sequencing and methylation analysis by ligation mediated PCR. Science 246(4931):810–813

    Article  CAS  PubMed  Google Scholar 

  20. Mueller PR, Wold B (1989) In vivo footprinting of a muscle specific enhancer by ligation mediated PCR. Science 246(4931):780–786

    Article  CAS  PubMed  Google Scholar 

  21. Becker NA, Maher LJ 3rd (1999) LMPCR for detection of oligonucleotide-directed triple helix formation: a cautionary note. Antisense Nucleic Acid Drug Dev 9(3):313–316

    Article  CAS  PubMed  Google Scholar 

  22. Mueller PR, Wold B, Garrity PA (2001) Ligation-mediated PCR for genomic sequencing and footprinting. Curr Protoc Mol Biol Chapter 15:Unit 15 13

    Google Scholar 

  23. Schmid M, Durussel T, Laemmli UK (2004) ChIC and ChEC; genomic mapping of chromatin proteins. Mol Cell 16(1):147–157

    PubMed  CAS  Google Scholar 

  24. Goetze H, Wittner M, Hamperl S, Hondele M, Merz K, Stoeckl U, Griesenbeck J (2010) Alternative chromatin structures of the 35S rRNA genes in Saccharomyces cerevisiae provide a molecular basis for the selective recruitment of RNA polymerases I and II. Mol Cell Biol 30(8):2028–2045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Maxam AM, Gilbert W (1980) Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol 65(1):499–560

    Article  CAS  PubMed  Google Scholar 

  26. Hoffman EA, Frey BL, Smith LM, Auble DT (2015) Formaldehyde crosslinking: a tool for the study of chromatin complexes. J Biol Chem 290(44):26404–26411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Mayo Foundation and by National Institutes of Health grant GM75965 to LJM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. James Maher III .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Becker, N.A., Peters, J.P., Maher, L.J. (2018). High-Resolution Characterization of DNA/Protein Complexes in Living Bacteria. In: Dame, R. (eds) Bacterial Chromatin. Methods in Molecular Biology, vol 1837. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8675-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8675-0_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8674-3

  • Online ISBN: 978-1-4939-8675-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics