Skip to main content

Abstract

What happens in a reaction when nothing seems to happen macroscopically? This is the case of constant solutions or stationary points (also called equilibria or steady states) of the induced kinetic differential equations. Existence, nonnegativity, and uniqueness are treated and also special properties such as complex balancing and detailed balancing. These properties will turn out to be useful to study stability properties in the chapter on transient behavior. Connections of stationary points with first integrals are also mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barkai N, Leibler S (1997) Robustness in simple biochemical networks. Nature 387:913–917

    Article  CAS  Google Scholar 

  • Blüthgen N, Herzel H (2003) How robust are switches in intracellular signaling cascades? J Theor Biol 225:293–300

    Article  Google Scholar 

  • Boros B (2013) On the existence of the positive steady states of weakly reversible deficiency-one mass action systems. Math Biosci 245(2):157–170

    Article  CAS  Google Scholar 

  • Boros B (2017) On the existence of positive steady states for weakly reversible mass-action systems. arxivorg

    Google Scholar 

  • Buchberger B (2001) Gröbner bases: a short introduction for systems theorists. In: EUROCAST, pp 1–19. http://dx.doi.org/10.1007/3-540-45654-6_1

    Google Scholar 

  • Buchberger B, Winkler F (1998) Gröbner bases and applications, vol 251. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Burzomato V, Beato M, Groot-Kormelink PJ, Colquhoun D, Sivilotti LG (2004) Single-channel behavior of heteromeric α1β glycine receptors: an attempt to detect a conformational change before the channel opens. J Neurosci 24(48):10924–10940

    Article  CAS  Google Scholar 

  • Colquhoun D, Dowsland KA, Beato M, Plested AJR (2004) How to impose microscopic reversibility in complex reaction mechanisms. Biophys J 86(6):3510–3518

    Article  CAS  Google Scholar 

  • Craciun G, Dickenstein A, Shiu A, Sturmfels B (2009) Toric dynamical systems. J Symb Comput 44(11):1551–1565

    Article  Google Scholar 

  • Deng J, Jones C, Feinberg M, Nachman A (2011) On the steady states of weakly reversible chemical reaction networks. arXiv preprint arXiv:11112386

    Google Scholar 

  • Dexter JP, Gunawardena J (2013) Dimerization and bifunctionality confer robustness to the isocitrate dehydrogenase regulatory system in Escherichia coli. J Biol Chem 288(8):5770–5778

    Article  CAS  Google Scholar 

  • Dickenstein A, Millán MP (2011) How far is complex balancing from detailed balancing? Bull Math Biol 73:811–828

    Article  CAS  Google Scholar 

  • Érdi P, Ropolyi L (1979) Investigation of transmitter-receptor interactions by analyzing postsynaptic membrane noise using stochastic kinetics. Biol Cybern 32(1):41–45

    Article  Google Scholar 

  • Feinberg M (1989) Necessary and sufficient conditions for detailed balancing in mass action systems of arbitrary complexity. Chem Eng Sci 44(9):1819–1827

    Article  CAS  Google Scholar 

  • Ferrell JEJ (2002) Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability. Curr Opin Cell Biol 14(2):140–148

    Article  CAS  Google Scholar 

  • Fowler RH, Milne EA (1925) A note on the principle of detailed balancing. Proc Natl Acad Sci USA 11:400–402

    Article  CAS  Google Scholar 

  • Ganapathisubramanian N, Showalter K (1984) Bistability, mushrooms, and isolas. J Chem Phys 80(9):4177–4184

    Article  CAS  Google Scholar 

  • Gold V, Loening KL, McNaught AD, Shemi P (1997) IUPAC compendium of chemical terminology, 2nd edn. Blackwell Science, Oxford

    Google Scholar 

  • Gorban AN, Yablonsky GS (2011) Extended detailed balance for systems with irreversible reactions. Chem Eng Sci 66(21):5388–5399

    Article  CAS  Google Scholar 

  • Horn F (1972) Necessary and sufficient conditions for complex balancing in chemical kinetics. Arch Ratl Mech Anal 49:172–186

    Article  Google Scholar 

  • Horn F, Jackson R (1972) General mass action kinetics. Arch Ratl Mech Anal 47:81–116

    Article  Google Scholar 

  • Joshi B (2015) A detailed balanced reaction network is sufficient but not necessary for its Markov chain to be detailed balanced. Discrete Contin Dyn Syst Ser B 20(4):1077–1105

    Article  Google Scholar 

  • Joshi B, Shiu A (2015) A survey of methods for deciding whether a reaction network is multistationary. Math Model Nat Phenom 10(5):47–67

    Article  Google Scholar 

  • Kaykobad M (1985) Positive solutions of positive linear systems. Linear Algebra Appl 64:133–140

    Article  Google Scholar 

  • Kéromnès A, Metcalfe WK, Heufer K, Donohoe N, Das A, Sung CJ, Herzler J, Naumann C, Griebel P, Mathieu O, Krejci MC, Petersen EL, Pitz J, Curran HJ (2013) An experimental and detailed chemical kinetic modeling study of hydrogen and syngas mixture oxidation at elevated pressures. Comb Flame 160(6):995–1011

    Article  Google Scholar 

  • Kitano H (2004) Biological robustness. Nat Rev Genet 5:826–837

    Article  CAS  Google Scholar 

  • Lasserre JB, Laurent M, Rostalski P (2008) Semidefinite characterization and computation of zero-dimensional real radical ideals. Found Comput Math 8(5):607–647

    Article  Google Scholar 

  • Li R, Li H (1989) Isolas, mushrooms and other forms of multistability in isothermal bimolecular reacting systems. Chem Eng Sci 44(12):2995–3000

    Article  CAS  Google Scholar 

  • Li G, Rabitz H (2014) Analysis of gene network robustness based on saturated fixed point attractors. EURASIP J Bioinform Syst Biol 2014(1):4

    Article  Google Scholar 

  • Millán MSP (2011) Métodos algebraicos para el estudio de redes bioquımicas. PhD thesis, Universidad de Buenos Aires en el area Ciencias Matematicas, Buenos Aires, 167 pp.

    Google Scholar 

  • Millán MP, Dickenstein A, Shiu A, Conradi C (2012) Chemical reaction systems with toric steady states. Bull Math Biol 74(5):1027–1065

    Article  Google Scholar 

  • Mincheva M, Roussel MR (2007) Graph-theoretic methods for the analysis of chemical and biochemical networks. I. Multistability and oscillations in ordinary differential equation models. J Math Biol 55(1):61–86

    PubMed  Google Scholar 

  • Nagy I, Tóth J (2012) Microscopic reversibility or detailed balance in ion channel models. J Math Chem 50(5):1179–1199

    Article  CAS  Google Scholar 

  • Nagy I, Kovács B, Tóth J (2009) Detailed balance in ion channels:applications of Feinberg’s theorem. React Kinet Catal Lett 96(2):263–267

    Article  CAS  Google Scholar 

  • Naundorf B, Wolf F, Volgushev M (2006) Unique features of action potential initiation in cortical neurons. Nature 440:1060–1063

    Article  CAS  Google Scholar 

  • Orlov VN (1980) Kinetic equations with a complex balanced stationary point. React Kinet Catal Lett 14(2):149–154

    Article  CAS  Google Scholar 

  • Orlov VN, Rozonoer LI (1984a) The macrodynamics of open systems and the variational principle of the local potential I. J Frankl Inst 318(5):283–314

    Article  Google Scholar 

  • Orlov VN, Rozonoer LI (1984b) The macrodynamics of open systems and the variational principle of the local potential II. Applications. J Frankl Inst 318(5):315–347

    Article  Google Scholar 

  • Othmer H (1985) The mathematical aspects of temporal oscillations in reacting systems. In: Burger M, Field RJ (eds) Oscillations and traveling waves in chemical systems. Wiley, New York, pp 7–54

    Google Scholar 

  • Pedersen P, Roy MF, Szpirglas A (1993) Counting real zeros in the multivariate case. In: Computational algebraic geometry. Birkhäuser, Boston, pp 203–224

    Chapter  Google Scholar 

  • Póta G (2006) Mathematical problems for chemistry students. Elsevier, Amsterdam

    Google Scholar 

  • Póta G, Stedman G (1995) An uncommon form of multistationarity in a realistic kinetic model. J Math Chem 17(2–3):285—289

    Article  Google Scholar 

  • Rothberg BS, Magleby KL (2001) Testing for detailed balance (microscopic reversibility) in ion channel gating. Biophys J 80(6):3025–3026

    Article  CAS  Google Scholar 

  • Schuster S, Höfer T (1991) Determining all extreme semi-positive conservation relations in chemical reaction systems—a test criterion for conservativity. J Chem Soc Faraday Trans 87(16):2561–2566

    Article  CAS  Google Scholar 

  • Schuster S, Schuster R (1991) Detecting strictly detailed balanced subnetworks in open chemical reaction networks. J Math Chem 6(1):17–40

    Article  CAS  Google Scholar 

  • Shear D (1967) An analog of the Boltzmann H-theorem (a Liapunov function) for systems of coupled chemical reactions. J Theor Biol 16:212–225

    Article  CAS  Google Scholar 

  • Shinar G, Feinberg M (2010) Structural sources of robustness in biochemical reaction networks. Science 327(5971):1389–1391

    Article  CAS  Google Scholar 

  • Shinar G, Feinberg M (2011) Design principles for robust biochemical reaction networks: what works, what cannot work, and what might almost work. Math Biosci 231(1):39–48

    Article  CAS  Google Scholar 

  • Shinar G, Alon U, Feinberg M (2009) Sensitivity and robustness in chemical reaction networks. SIAM J Appl Math 69(4):977–998

    Article  CAS  Google Scholar 

  • Shiu A (2008) The smallest multistationary mass-preserving chemical reaction network. Lect Notes Comput Sci 5147:172–184. Algebraic Biology

    Google Scholar 

  • Simon LP (1995) Globally attracting domains in two-dimensional reversible chemical dynamical systems. Ann Univ Sci Budapest Sect Comput 15:179–200

    Google Scholar 

  • Szederkényi G, Hangos KM (2011) Finding complex balanced and detailed balanced realizations of chemical reaction networks. J Math Chem 49:1163–1179

    Article  Google Scholar 

  • Tolman RC (1925) The principle of microscopic reversibility. Proc Natl Acad Sci USA 11:436–439

    Article  CAS  Google Scholar 

  • Tóth J (1999) Multistationarity is neither necessary nor sufficient to oscillations. J Math Chem 25:393–397

    Article  Google Scholar 

  • Turányi T (1990) KINAL: a program package for kinetic analysis of complex reaction mechanisms. Comput Chem 14:253–254

    Article  Google Scholar 

  • Turányi T, Tomlin AS (2014) Analysis of kinetic reaction mechanisms. Springer, Berlin

    Book  Google Scholar 

  • van der Schaft A, Rao S, Jayawardhana B (2015) Complex and detailed balancing of chemical reaction networks revisited. J Math Chem 53(6):1445–1458

    Article  Google Scholar 

  • Vlad MO, Ross J (2009) Thermodynamically based constraints for rate coefficients of large biochemical networks. Syst Biol Med 1(3):348–358

    CAS  Google Scholar 

  • Volpert AI, Hudyaev S (1985) Analyses in classes of discontinuous functions and equations of mathematical physics. Martinus Nijhoff Publishers, Dordrecht (Russian original: 1975)

    Google Scholar 

  • Wegscheider R (1901/1902) Über simultane Gleichgewichte und die Beziehungen zwischen Thermodynamik und Reaktionskinetik homogener Systeme. Zsch phys Chemie 39:257–303

    Google Scholar 

  • Wei J (1962) Axiomatic treatment of chemical reaction systems. J Chem Phys 36(6):1578–1584

    Article  CAS  Google Scholar 

  • Wilhelm T (2009) The smallest chemical reaction system with bistability. BMC Syst Biol 3(90):9

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tóth, J., Nagy, A.L., Papp, D. (2018). Stationary Points. In: Reaction Kinetics: Exercises, Programs and Theorems. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-8643-9_7

Download citation

Publish with us

Policies and ethics