Skip to main content

Detection of Separase Activity Using a Cleavage Sensor in Live Mouse Oocytes

  • Protocol
  • First Online:
Mouse Oocyte Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1818))

Abstract

Separase proteolytically removes cohesin complexes from sister chromatid arms in meiosis I, which is essential for chromosome segregation. Regulation of separase activity is essential for proper cell cycle progression and correct chromosome segregation. Onset of endogenous separase activity has not yet been observed in live oocytes.

We describe here a method for detecting separase activity in mouse oocytes in vivo. This method utilizes a previously described cleavage sensor made up of H2B-mCherry fused with Scc1(107–268 aa)-YFP. The cleavage sensor is loaded on the chromosomes through its H2B-tag, and the signal from both mCherry and YFP is visible. Upon separase activation the Scc1 fragment is cleaved and YFP dissociates from the chromosomes. The change in the ratio between mCherry and YFP fluorescence intensity is a readout of separase activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wassmann K (2013) Sister chromatid segregation in meiosis II: deprotection through phosphorylation. Cell Cycle 12:1352–1359

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Webster A, Schuh M (2017) Mechanisms of aneuploidy in human eggs. Trends Cell Biol 27:55–68

    Article  PubMed  CAS  Google Scholar 

  3. Buonomo SB, Clyne RK, Fuchs J et al (2000) Disjunction of homologous chromosomes in meiosis I depends on proteolytic cleavage of the meiotic cohesin Rec8 by Separin. Cell 103:387–398

    Article  PubMed  CAS  Google Scholar 

  4. Kudo NR, Wassmann K, Anger M et al (2006) Resolution of chiasmata in oocytes requires separase-mediated proteolysis. Cell 126:135–146

    Article  PubMed  CAS  Google Scholar 

  5. Hornig NC, Knowles PP, McDonald NQ et al (2002) The dual mechanism of separase regulation by securin. Curr Biol 12:973–982

    Article  PubMed  CAS  Google Scholar 

  6. Funabiki H, Yamano H, Kumada K et al (1996) Cut2 proteolysis required for sister-chromatid separation in fission yeast. Nature 381:438–441

    Article  PubMed  CAS  Google Scholar 

  7. Cohen-Fix O, Peters J, Kirschner M et al (1996) Anaphase initiation in Saccharomyces cerevisiae is controlled by the APC-dependent degradation of the anaphase inhibtitor Psd1p. Genes Dev 10:3081–3093

    Article  PubMed  CAS  Google Scholar 

  8. Zou H, McGarry TJ, Bernal T et al (1999) Identification of a vertebrate sister-chromatid separation inhibitor involved in transformation and tumorigenesis. Science 285:418–422

    Article  PubMed  CAS  Google Scholar 

  9. Gorr IH, Boos D, Stemmann O (2005) Mutual inhibition of separase and Cdk1 by two-step complex formation. Mol Cell 19:135–141

    Article  PubMed  CAS  Google Scholar 

  10. Hellmuth S, Pöhlmann C, Brown A et al (2015) Positive and negative regulation of vertebrate separase by Cdk1-Cyclin B1 may explain why securin is dispensable. J Biol Chem 290:8002–8010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Homer H (2013) The APC/C in female mammalian meiosis I. Reproduction 146:61–71

    Article  CAS  Google Scholar 

  12. Brooker AS, Berkowitz KM (2014) The roles of cohesins in mitosis, meiosis, and human health and disease. Methods Mol Biol 1170:229–266

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Tachibana-Konwalski K, Godwin J, van der Weyden L et al (2010) Rec8-containing cohesin maintains bivalents without turnover during the growing phase of mouse oocytes. Genes Dev 24:2505–2516

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Burkhardt S, Borsos M, Szydlowska A et al (2016) Chromosome cohesion established by Rec8-cohesin in fetal oocytes is maintained without detectable turnover in oocytes arrested for months in mice. Curr Biol 26:1–8

    Article  CAS  Google Scholar 

  15. Shindo N, Kumada K, Hirota T (2012) Separase sensor reveals dual roles for separase coordinating cohesin cleavage and Cdk1 inhibition. Dev Cell 23:112–123

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Professor Olaf Stemmann for providing the cleavage sensor construct. This work was supported by a postdoctoral fellowship by the Fondation de la Recherche Médicale (SPF20150934093) and an EMBO short-term fellowship (ASTF 426-2015) for E.N., and the French Ministry of Research through the Doctoral School of Physiology, Physiopathology and Therapeutics for N.B. K. Wassmann acknowledges the financial support through grants by the Agence Nationale de la Recherche (ANR-16-CE92-0007-01), a grant “Equipe FRM” by the Fondation de la Recherche Médicale (Equipe DEQ20160334921), and core funding by UPMC and CNRS.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Elvira Nikalayevich or Katja Wassmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nikalayevich, E., Bouftas, N., Wassmann, K. (2018). Detection of Separase Activity Using a Cleavage Sensor in Live Mouse Oocytes. In: Verlhac, MH., Terret, ME. (eds) Mouse Oocyte Development. Methods in Molecular Biology, vol 1818. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8603-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8603-3_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8602-6

  • Online ISBN: 978-1-4939-8603-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics