Skip to main content

Characterization of Mouse γδ T Cell Subsets in the Setting of Type-2 Immunity

  • Protocol
  • First Online:
  • 2920 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1799))

Abstract

Accumulating evidence indicates that γδ T cells are a critical component of type-2 immunity. However, the role of these cells in type-2 immune responses seems to be divergent. γδ T cells are heterogeneous lymphocytes that can be further divided into TCR-Vγ/δ definable subsets. Different subsets have distinct and sometimes opposite function during immune responses. In this chapter, we describe the detailed protocol for characterization of γδ T cell subsets in a mouse model of ovalbumin (OVA)/alum-induced type-2 immunity. Our protocol includes identifying γδ T cell subsets by flow cytometry, functionally inactivating individual subsets in vivo, purifying γδ T cell subsets, and using adoptive cell transfer to explore the role of individual subsets in OVA/alum-induced IgE responses.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Born WK, O’Brien RL (2016) Discovery of the gammadelta TCR: Act II. J Immunol 196(9):3507–3508. https://doi.org/10.4049/jimmunol.1600404

    Article  CAS  PubMed  Google Scholar 

  2. Bank I, DePinho RA, Brenner MB, Cassimeris J, Alt FW, Chess L (1986) A functional T3 molecule associated with a novel heterodimer on the surface of immature human thymocytes. Nature 322(6075):179–181. https://doi.org/10.1038/322179a0

    Article  CAS  PubMed  Google Scholar 

  3. Brenner MB, McLean J, Dialynas DP, Strominger JL, Smith JA, Owen FL, Seidman JG, Ip S, Rosen F, Krangel MS (1986) Identification of a putative second T-cell receptor. Nature 322(6075):145–149. https://doi.org/10.1038/322145a0

    Article  CAS  PubMed  Google Scholar 

  4. Zhang L, Jin N, Nakayama M, O’Brien RL, Eisenbarth GS, Born WK (2010) Gamma delta T cell receptors confer autonomous responsiveness to the insulin-peptide B:9-23. J Autoimmun 34(4):478–484. https://doi.org/10.1016/j.jaut.2009.12.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zeng X, Wei YL, Huang J, Newell EW, Yu H, Kidd BA, Kuhns MS, Waters RW, Davis MM, Weaver CT, Chien YH (2012) gammadelta T cells recognize a microbial encoded B cell antigen to initiate a rapid antigen-specific interleukin-17 response. Immunity 37(3):524–534. https://doi.org/10.1016/j.immuni.2012.06.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chien YH, Meyer C, Bonneville M (2014) Gammadelta T cells: first line of defense and beyond. Annu Rev Immunol 32:121–155. https://doi.org/10.1146/annurev-immunol-032713-120216

    Article  CAS  PubMed  Google Scholar 

  7. Uldrich AP, Le Nours J, Pellicci DG, Gherardin NA, McPherson KG, Lim RT, Patel O, Beddoe T, Gras S, Rossjohn J, Godfrey DI (2013) CD1d-lipid antigen recognition by the gammadelta TCR. Nat Immunol 14(11):1137–1145. https://doi.org/10.1038/ni.2713

    Article  CAS  PubMed  Google Scholar 

  8. Carding SR, Egan PJ (2002) Gammadelta T cells: functional plasticity and heterogeneity. Nat Rev Immunol 2(5):336–345. https://doi.org/10.1038/nri797

    Article  CAS  PubMed  Google Scholar 

  9. Heilig JS, Tonegawa S (1986) Diversity of murine gamma genes and expression in fetal and adult T lymphocytes. Nature 322(6082):836–840. https://doi.org/10.1038/322836a0

    Article  CAS  PubMed  Google Scholar 

  10. Garman RD, Doherty PJ, Raulet DH (1986) Diversity, rearrangement, and expression of murine T cell gamma genes. Cell 45(5):733–742

    Article  CAS  Google Scholar 

  11. Born WK, Huang Y, Jin N, Huang H, O'Brien RL (2010) Balanced approach of gammadelta T cells to type 2 immunity. Immunol Cell Biol 88(3):269–274. https://doi.org/10.1038/icb.2009.105

    Article  CAS  PubMed  Google Scholar 

  12. Pereira P, Gerber D, Huang SY, Tonegawa S (1995) Ontogenic development and tissue distribution of V gamma 1-expressing gamma/delta T lymphocytes in normal mice. J Exp Med 182(6):1921–1930

    Article  CAS  Google Scholar 

  13. Pereira P, Boucontet L (2004) Rates of recombination and chain pair biases greatly influence the primary gammadelta TCR repertoire in the thymus of adult mice. J Immunol 173(5):3261–3270

    Article  CAS  Google Scholar 

  14. Dent AL, Matis LA, Hooshmand F, Widacki SM, Bluestone JA, Hedrick SM (1990) Self-reactive gamma delta T cells are eliminated in the thymus. Nature 343(6260):714–719. https://doi.org/10.1038/343714a0

    Article  CAS  PubMed  Google Scholar 

  15. Havran WL, Grell S, Duwe G, Kimura J, Wilson A, Kruisbeek AM, O'Brien RL, Born W, Tigelaar RE, Allison JP (1989) Limited diversity of T-cell receptor gamma-chain expression of murine Thy-1+ dendritic epidermal cells revealed by V gamma 3-specific monoclonal antibody. Proc Natl Acad Sci U S A 86(11):4185–4189

    Article  CAS  Google Scholar 

  16. Tigelaar RE, Lewis JM, Bergstresser PR (1990) TCR gamma/delta+ dendritic epidermal T cells as constituents of skin-associated lymphoid tissue. J Invest Dermatol 94(6 Suppl):58S–63S

    Article  CAS  Google Scholar 

  17. Roark CL, Aydintug MK, Lewis J, Yin X, Lahn M, Hahn YS, Born WK, Tigelaar RE, O’Brien RL (2004) Subset-specific, uniform activation among V gamma 6/V delta 1+ gamma delta T cells elicited by inflammation. J Leukoc Biol 75(1):68–75. https://doi.org/10.1189/jlb.0703326

    Article  CAS  PubMed  Google Scholar 

  18. Pereira P, Hermitte V, Lembezat MP, Boucontet L, Azuara V, Grigoriadou K (2000) Developmentally regulated and lineage-specific rearrangement of T cell receptor Valpha/delta gene segments. Eur J Immunol 30(7):1988–1997. https://doi.org/10.1002/1521-4141(200007)30:7<1988::AID-IMMU1988>3.0.CO;2-W

    Article  CAS  PubMed  Google Scholar 

  19. Lefrancois L, LeCorre R, Mayo J, Bluestone JA, Goodman T (1990) Extrathymic selection of TCR gamma delta + T cells by class II major histocompatibility complex molecules. Cell 63(2):333–340

    Article  CAS  Google Scholar 

  20. Belles C, Kuhl AK, Donoghue AJ, Sano Y, O'Brien RL, Born W, Bottomly K, Carding SR (1996) Bias in the gamma delta T cell response to Listeria monocytogenes. V delta 6.3+ cells are a major component of the gamma delta T cell response to Listeria monocytogenes. J Immunol 156(11):4280–4289

    CAS  PubMed  Google Scholar 

  21. Pircher H, Rebai N, Groettrup M, Gregoire C, Speiser DE, Happ MP, Palmer E, Zinkernagel RM, Hengartner H, Malissen B (1992) Preferential positive selection of V alpha 2+ CD8+ T cells in mouse strains expressing both H-2k and T cell receptor V alpha a haplotypes: determination with a V alpha 2-specific monoclonal antibody. Eur J Immunol 22(2):399–404. https://doi.org/10.1002/eji.1830220217

    Article  CAS  PubMed  Google Scholar 

  22. Ferrick DA, Schrenzel MD, Mulvania T, Hsieh B, Ferlin WG, Lepper H (1995) Differential production of interferon-gamma and interleukin-4 in response to Th1- and Th2-stimulating pathogens by gamma delta T cells in vivo. Nature 373(6511):255–257. https://doi.org/10.1038/373255a0

    Article  CAS  PubMed  Google Scholar 

  23. Zuany-Amorim C, Ruffie C, Haile S, Vargaftig BB, Pereira P, Pretolani M (1998) Requirement for gammadelta T cells in allergic airway inflammation. Science 280(5367):1265–1267

    Article  CAS  Google Scholar 

  24. Svensson L, Lilliehook B, Larsson R, Bucht A (2003) Gammadelta T cells contribute to the systemic immunoglobulin E response and local B-cell reactivity in allergic eosinophilic airway inflammation. Immunology 108(1):98–108

    Article  CAS  Google Scholar 

  25. McMenamin C, Pimm C, McKersey M, Holt PG (1994) Regulation of IgE responses to inhaled antigen in mice by antigen-specific gamma delta T cells. Science 265(5180):1869–1871

    Article  CAS  Google Scholar 

  26. Hahn YS, Taube C, Jin N, Sharp L, Wands JM, Aydintug MK, Lahn M, Huber SA, O’Brien RL, Gelfand EW, Born WK (2004) Different potentials of gamma delta T cell subsets in regulating airway responsiveness: V gamma 1+ cells, but not V gamma 4+ cells, promote airway hyperreactivity, Th2 cytokines, and airway inflammation. J Immunol 172(5):2894–2902

    Article  CAS  Google Scholar 

  27. Huang Y, Jin N, Roark CL, Aydintug MK, Wands JM, Huang H, O'Brien RL, Born WK (2009) The influence of IgE-enhancing and IgE-suppressive gammadelta T cells changes with exposure to inhaled ovalbumin. J Immunol 183(2):849–855. https://doi.org/10.4049/jimmunol.0804104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Huang Y, Aydintug MK, Loomis J, Macleod MK, McKee AS, Kirchenbaum G, Jakubzick CV, Kedl RM, Sun D, Jacobelli J, O'Brien RL, Born WK (2013) Antigen-specific regulation of IgE antibodies by non-antigen-specific gammadelta T cells. J Immunol 190(3):913–921. https://doi.org/10.4049/jimmunol.1202230

    Article  CAS  PubMed  Google Scholar 

  29. Huang Y, Yang Z, McGowan J, Huang H, O'Brien RL, Born WK (2015) Regulation of IgE responses by gammadelta T cells. Curr Allergy Asthma Rep 15(4):13. https://doi.org/10.1007/s11882-015-0519-z

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a NFSC grant 81670825 to Y.H., NIH grants R21AI095765 and R21AI122135 to W.K.B., and NIH grant R01 EY021199 to RLO.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zeng, W., O’Brien, R.L., Born, W.K., Huang, Y. (2018). Characterization of Mouse γδ T Cell Subsets in the Setting of Type-2 Immunity. In: Reinhardt, R. (eds) Type 2 Immunity. Methods in Molecular Biology, vol 1799. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-7896-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7896-0_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-7895-3

  • Online ISBN: 978-1-4939-7896-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics