Skip to main content

Characterization of Thymic Development of Natural Killer T Cell Subsets by Multiparameter Flow Cytometry

  • Protocol
  • First Online:
Book cover Type 2 Immunity

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1799))

Abstract

Natural killer T (NKT) cells are a subset of αβ T cells that recognize lipid antigens presented by the nonclassical MHC molecule CD1d. Although numerically small, these cells have been shown to play an important role in the regulation of multiple immune responses, including microbial infection, autoimmunity, and cancer. Even in the steady state, cytokine production by NKT cells influences the basal status and function of other immune cells, including dendritic cells and CD8 T cells. To fully understand their biology and harness them in the clinic, it is imperative to dissect the molecular mechanisms involved in the acquisition of their functionality. Unlike conventional αβ T cells, NKT cells acquire their effector function during development in the thymus. At this time, precursors commit to one of three functionally different effector lineages: NKT1, NKT2, and NKT17. These subsets are characterized by the secretion of different cytokines upon antigenic stimulation and by the expression of the master transcription factors Tbet, promyelocytic leukemia zinc finger (PLZF), and retinoic orphan receptor γ t (RORγt). Here we describe a multicolor flow cytometry protocol to identify NKT cell subsets and interrogate the progression of NKT precursors through their development in the thymus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bendall SC, Nolan GP, Roederer M, Chattopadhyay PK (2012) A deep profiler’s guide to cytometry. Trends Immunol 33(7):323–332. https://doi.org/10.1016/j.it.2012.02.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Altman JD, Davis MM (2001) MHC-peptide tetramers to visualize antigen-specific T cells. Curr Prot Immunol. doi:https://doi.org/10.1002/cpim.14

  3. Altman JD, Moss PA, Goulder PJ, Barouch DH, McHeyzer-Williams MG, Bell JI, McMichael AJ, Davis MM (1996) Phenotypic analysis of antigen-specific T lymphocytes. Science 274(5284):94–96

    Article  CAS  Google Scholar 

  4. Benlagha K, Weiss A, Beavis A, Teyton L, Bendelac A (2000) In vivo identification of glycolipid antigen-specific T cells using fluorescent CD1d tetramers. J Exp Med 191(11):1895–1903

    Article  CAS  Google Scholar 

  5. Matsuda JL, Naidenko OV, Gapin L, Nakayama T, Taniguchi M, Wang CR, Koezuka Y, Kronenberg M (2000) Tracking the response of natural killer T cells to a glycolipid antigen using CD1d tetramers. J Exp Med 192(5):741–754

    Article  CAS  Google Scholar 

  6. Schulz KR, Danna EA, Krutzik PO, Nolan GP (2012) Single-cell phospho-protein analysis by flow cytometry. Curr Prot Immunol Chapter 8:Unit 8.17.11-20. doi:https://doi.org/10.1002/0471142735.im0817s96

  7. Bendelac A, Savage PB, Teyton L (2007) The biology of NKT cells. Annu Rev Immunol 25:297–336. https://doi.org/10.1146/annurev.immunol.25.022106.141711

    Article  CAS  PubMed  Google Scholar 

  8. Gapin L, Matsuda JL, Surh CD, Kronenberg M (2001) NKT cells derive from double-positive thymocytes that are positively selected by CD1d. Nat Immunol 2(10):971–978. https://doi.org/10.1038/ni710

    Article  CAS  PubMed  Google Scholar 

  9. Wei DG, Lee H, Park SH, Beaudoin L, Teyton L, Lehuen A, Bendelac A (2005) Expansion and long-range differentiation of the NKT cell lineage in mice expressing CD1d exclusively on cortical thymocytes. J Exp Med 202(2):239–248. https://doi.org/10.1084/jem.20050413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Griewank K, Borowski C, Rietdijk S, Wang N, Julien A, Wei DG, Mamchak AA, Terhorst C, Bendelac A (2007) Homotypic interactions mediated by Slamf1 and Slamf6 receptors control NKT cell lineage development. Immunity 27(5):751–762. https://doi.org/10.1016/j.immuni.2007.08.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Benlagha K, Wei DG, Veiga J, Teyton L, Bendelac A (2005) Characterization of the early stages of thymic NKT cell development. J Exp Med 202(4):485–492. https://doi.org/10.1084/jem.20050456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dasgupta S, Kumar V (2016) Type II NKT cells: a distinct CD1d-restricted immune regulatory NKT cell subset. Immunogenetics 68(8):665–676. https://doi.org/10.1007/s00251-016-0930-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Seiler MP, Mathew R, Liszewski MK, Spooner CJ, Barr K, Meng F, Singh H, Bendelac A (2012) Elevated and sustained expression of the transcription factors Egr1 and Egr2 controls NKT lineage differentiation in response to TCR signaling. Nat Immunol 13(3):264–271. https://doi.org/10.1038/ni.2230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Benlagha K, Kyin T, Beavis A, Teyton L, Bendelac A (2002) A thymic precursor to the NK T cell lineage. Science 296(5567):553–555

    Article  CAS  Google Scholar 

  15. Savage AK, Constantinides MG, Han J, Picard D, Martin E, Li B, Lantz O, Bendelac A (2008) The transcription factor PLZF directs the effector program of the NKT cell lineage. Immunity 29(3):391–403. https://doi.org/10.1016/j.immuni.2008.07.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kovalovsky D, Uche OU, Eladad S, Hobbs RM, Yi W, Alonzo E, Chua K, Eidson M, Kim HJ, Im JS, Pandolfi PP, Sant'Angelo DB (2008) The BTB-zinc finger transcriptional regulator PLZF controls the development of invariant natural killer T cell effector functions. Nat Immunol 9(9):1055–1064. https://doi.org/10.1038/ni.1641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lee YJ, Holzapfel KL, Zhu J, Jameson SC, Hogquist KA (2013) Steady-state production of IL-4 modulates immunity in mouse strains and is determined by lineage diversity of iNKT cells. Nat Immunol 14(11):1146–1154. https://doi.org/10.1038/ni.2731

    Article  CAS  PubMed  Google Scholar 

  18. Lee YJ, Wang H, Starrett GJ, Phuong V, Jameson SC, Hogquist KA (2015) Tissue-specific distribution of iNKT cells impacts their cytokine response. Immunity 43(3):566–578. https://doi.org/10.1016/j.immuni.2015.06.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Townsend MJ, Weinmann AS, Matsuda JL, Salomon R, Farnham PJ, Biron CA, Gapin L, Glimcher LH (2004) T-bet regulates the terminal maturation and homeostasis of NK and Valpha14i NKT cells. Immunity 20(4):477–494

    Article  CAS  Google Scholar 

  20. Givan AL (2011) Flow cytometry: an introduction. Methods Mol Biol 699:1–29. https://doi.org/10.1007/978-1-61737-950-5_1

    Article  CAS  PubMed  Google Scholar 

  21. Baumgarth N, Roederer M (2000) A practical approach to multicolor flow cytometry for immunophenotyping. J Immunol Methods 243(1–2):77–97

    Article  CAS  Google Scholar 

  22. Carlyle JR, Mesci A, Ljutic B, Belanger S, Tai LH, Rousselle E, Troke AD, Proteau MF, Makrigiannis AP (2006) Molecular and genetic basis for strain-dependent NK1.1 alloreactivity of mouse NK cells. J Immunol 176(12):7511–7524

    Article  CAS  Google Scholar 

  23. Perfetto SP, Chattopadhyay PK, Roederer M (2004) Seventeen-colour flow cytometry: unravelling the immune system. Nat Rev Immunol 4(8):648–655. https://doi.org/10.1038/nri1416

    Article  CAS  PubMed  Google Scholar 

  24. Dutta M, Kraus ZJ, Gomez-Rodriguez J, Hwang SH, Cannons JL, Cheng J, Lee SY, Wiest DL, Wakeland EK, Schwartzberg PL (2013) A role for Ly108 in the induction of promyelocytic zinc finger transcription factor in developing thymocytes. J Immunol 190(5):2121–2128. https://doi.org/10.4049/jimmunol.1202145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Gapin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tuttle, K.D., Gapin, L. (2018). Characterization of Thymic Development of Natural Killer T Cell Subsets by Multiparameter Flow Cytometry. In: Reinhardt, R. (eds) Type 2 Immunity. Methods in Molecular Biology, vol 1799. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-7896-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7896-0_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-7895-3

  • Online ISBN: 978-1-4939-7896-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics