Skip to main content

Personality Is Reflected in Brain Morphometry

  • Protocol
  • First Online:
Brain Morphometry

Part of the book series: Neuromethods ((NM,volume 136))

  • 1338 Accesses

Abstract

To fully characterize the relationship between structure and function as it relates to personality measures, techniques are needed that can distinguish among the different structural compartments of the gray and white matter contributing to the measures of size (cortical thickness and volume). By using structural neuroimaging techniques, such as region of interest (ROI)- and voxel-based morphometry (VBM), several studies addressed the associations between personality factors and morphometric measures that allowed characterizing the subtle brain structural differences in relation to different temperamental traits. To address brain-trait relationships, global measures, as total intracranial volume, total brain volume, total gray or white matter volumes, as well as regional measures, as gray or white matter volumes of specific brain areas have been investigated in relation to the specific dimensions of personality. Understanding anatomic variations as they relate to personality traits may help putting the functional findings in context and pave the way for studying micro-structural influences on personality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. American Psychiatric Association (2000) Diagnostic and statistical manual of mental disorders, 4th edn. AAA Publisher, Washington

    Google Scholar 

  2. DeYoung CG, Gray JR (2009) Personality neuroscience: explaining individual differences in affect, behavior, and cognition. In: Corr PJ, Matthews G (eds) The Cambridge handbook of personality psychology. Cambridge University Press, New York, pp 323–346

    Chapter  Google Scholar 

  3. Eysenck HJ, Eysenck MW (1985) Personality and individual differences: a natural science approach. Plenum, New York

    Book  Google Scholar 

  4. Grey JA (1982) The neuropsychology of anxiety: an enquiry into the functions of the septo-hippocampal system, 1st edn. Oxford University Press, Oxford

    Google Scholar 

  5. McCrae RR, Costa PT Jr (1987) Validation of the five-factor model of personality across instruments and observers. J Pers Soc Psychol 52(1):81–90

    Article  CAS  PubMed  Google Scholar 

  6. Cloninger CR (1987) A systematic method for clinical description and classification of personality variants: a proposal. Arch Gen Psychiatry 44:573–588

    Article  CAS  PubMed  Google Scholar 

  7. Zuckerman M, Cloninger CR (1996) Relationships between Cloninger’s, Zuckerman’s, and Eysenck’s dimensions of personality. Pers Individ Dif 21:283–285

    Article  PubMed  PubMed Central  Google Scholar 

  8. Uttal WR (2001) A credo for a revitalized behaviorism: characteristics and emerging principles. Behav Process 54(1–3):5–10

    Article  Google Scholar 

  9. Zuckerman M (2008) Zuckerman-Kuhlman personality questionnaire: an operational definition of the alternative five factorial model of personality. In: Boyle GJ, Matthews G, Saklofske DH (eds) Personality theory and assessment, vol 2. Sage, Los Angeles, pp 219–238

    Google Scholar 

  10. DeYoung CG, Hirsh JB, Shane MS et al (2010) Testing predictions from personality neuroscience. Brain structure and the big five. Psychol Sci 21:820–828

    Article  PubMed  PubMed Central  Google Scholar 

  11. O' Brien LM, Ziegler DA, Deutsch CK et al (2006) Adjustment for whole brain and cranial size in volumetric brain studies: a review of common adjustment factors and statistical methods. Harv Rev Psychiatry 14(3):141–151

    Article  Google Scholar 

  12. Changizi MA (2001) Principles underlying mammalian neocortical scaling. Biol Cybern 84(3):207–215

    Article  CAS  PubMed  Google Scholar 

  13. Finlay BL, Darlington RB, Nicastro N (2001) Developmental structure in brain evolution. Behav Brain Sci 24:263–308

    Article  CAS  PubMed  Google Scholar 

  14. Hazlett HC, Poe MD, Gerig G et al (2011) Early brain overgrowth in autism associated with an increase in cortical surface area before age 2 years. Arch Gen Psychiatry 68(5):467–476

    Article  PubMed  PubMed Central  Google Scholar 

  15. Courchesne E, Pierce K, Schumann CM et al (2007) Mapping early brain development in autism. Neuron 56(2):399–413

    Article  CAS  PubMed  Google Scholar 

  16. Bralten J, Greven CU, Franke B et al (2015) Voxel-based morphometry analysis reveals frontal brain differences in participants with ADHD and their unaffected siblings. J Psychiatry Neurosci 41(2):140377

    Google Scholar 

  17. Maier S, Perlov E, Graf E et al (2016) Discrete global but no focal Gray Matter volume reductions in Unmedicated adult patients with attention-deficit/hyperactivity disorder. Biol Psychiatry 80(12):905–915. https://doi.org/10.1016/j.biopsych.2015.05.012

    Article  PubMed  Google Scholar 

  18. Rogers JC, De Brito SA (2016) Cortical and subcortical Gray Matter volume in youths with conduct problems: a meta-analysis. JAMA Psychiat 73:64–72

    Article  Google Scholar 

  19. Silk TJ, Vilgis V, Adamson C et al (2016) Abnormal asymmetry in frontostriatal white matter in children with attention deficit hyperactivity disorder. Brain Imaging Behav 10(4):1080–1089. https://doi.org/10.1007/s11682-015-9470-9

    Article  PubMed  Google Scholar 

  20. Bonath B, Tegelbeckers J, Wilke M et al (2016) Regional Gray Matter volume differences between adolescents with ADHD and typically developing controls: further evidence for anterior cingulate involvement. J Atten Disord. pii: 1087054715619682

    Google Scholar 

  21. Good CD, Johnsrude IS, Ashburner J et al (2001) A voxel-based morphometric study of ageing in 465 normal adult human. NeuroImage 14:21–36

    Article  CAS  PubMed  Google Scholar 

  22. Raz N, Gunning-Dixon F, Head D et al (2004) Aging, sexual dimorphism, and hemispheric asymmetry of the cerebral cortex: replicability of regional differences in volume. Neurobiol Aging 25(3):377–396

    Article  PubMed  Google Scholar 

  23. Salat DH, Buckner RL, Snyder AZ et al (2004) Thinning of the cerebral cortex in aging. Cereb Cortex 14(7):721–730

    Article  PubMed  Google Scholar 

  24. Schmitt DP, Realo A, Voracek M et al (2008) Why can't a man be more like a woman? Sex differences in big five personality traits across 55 cultures. J Pers Soc Psychol 94(1):168–182

    Article  PubMed  Google Scholar 

  25. Sowell ER, Peterson BS, Thompson PM (2003) Mapping cortical change across the human life span. Nat Neurosci 6(3):309–315

    Article  CAS  PubMed  Google Scholar 

  26. Tisserand DJ, Pruessner JC, Sanz Arigita EJ et al (2002) Regional frontal cortical volumes decrease differentially in aging: an MRI study to compare volumetric approaches and voxel-based morphometry. NeuroImage 17:657–669

    Article  PubMed  Google Scholar 

  27. Cowell PE, Sluming VA, Wilkinson LD et al (2007) Effects of sex and age on regional prefrontal brain volume in two human cohorts. Eur J Neurosci 25(1):307–318

    Article  PubMed  Google Scholar 

  28. Murphy DG, Decarli C, McIntosh AR et al (1996) Sex differences in human brain morphometry and metabolism: an in vivo quantitative magnetic resonance imaging and positron emission tomography study on the effect of aging. Arch Gen Psychiatry 53(7):585–594

    Article  CAS  PubMed  Google Scholar 

  29. Goldstein JM, Seidman LJ, Horton NJ (2001) Normal sexual dimorphism of the adult human brain assessed by in vivo magnetic resonance imaging. Cereb Cortex 11(6):490–497

    Article  CAS  PubMed  Google Scholar 

  30. Luders E, Narr KL, Thompson PM et al (2006) Gender effects on cortical thickness and the influence of scaling. Hum Brain Mapp 27(4):314–324

    Article  CAS  PubMed  Google Scholar 

  31. Cloninger CR, Svrakic DM, Przybeck TR (1993) A psychobiological model of temperament and character. Arch Gen Psychiatry 50:975–990

    Article  CAS  PubMed  Google Scholar 

  32. Westlye LT, Bjørnebekk A, Grydeland H et al (2011) Linking an anxiety-related personality trait to brain white matter microstructure: diffusion tensor imaging and harm avoidance. Arch Gen Psychiatry 68:369–377

    Article  PubMed  Google Scholar 

  33. Laricchiuta D, Petrosini L, Piras F et al (2014) Linking novelty seeking and harm avoidance personality traits to cerebellar volumes. Hum Brain Mapp 35:285–296

    Article  PubMed  Google Scholar 

  34. Chapman BP, Duberstein PR, Sörensen S et al (2007) Gender differences in five factor model personality traits in an elderly cohort: extension of robust and surprising findings to an older generation. Pers Individ Dif 43(6):1594–1603

    Article  PubMed  PubMed Central  Google Scholar 

  35. Costa PT Jr, Terracciano A, McCrae RR (2001) Gender differences in personality traits across cultures: robust and surprising findings. J Pers Soc Psychol 81(2):322–331

    Article  PubMed  Google Scholar 

  36. Donnellan MB, Lucas RE (2008) Age differences in the Big Five across the life span: evidence from two national samples. Psychol Aging 23(3):558–566

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lüdtke O, Trautwein U, Husemann N (2009) Goal and personality trait development in a transitional period: assessing change and stability in personality development. Personal Soc Psychol Bull 35(4):428–441

    Article  Google Scholar 

  38. Rantanen J, Metsäpelto RL, Feldt T (2007) Long-term stability in the big five personality traits in adulthood. Scand J Psychol 48(6):511–518

    Article  PubMed  Google Scholar 

  39. Roberts BW, Walton KE, Viechtbauer W (2006) Patterns of mean-level change in personality traits across the life course: a meta-analysis of longitudinal studies. Psychol Bull 132(1):1–25

    Article  PubMed  Google Scholar 

  40. Hu X, Erb M, Ackermann H et al (2011) Voxel based morphometry studies of personality: issue of statistical model specification-effect of nuisance covariates. NeuroImage 54:1994–2005

    Article  PubMed  Google Scholar 

  41. Boyke J, Driemeyer J, Gaser C et al (2008) Training-induced brain structure changes in the elderly. J Neurosci 28:7031–7035

    Article  CAS  PubMed  Google Scholar 

  42. Di Paola M, Caltagirone C, Petrosini L (2012) Prolonged rock climbing activity induces structural changes in cerebellum and parietal lobe. Hum Brain Mapp 4:2707–2714

    Google Scholar 

  43. McDaniel L (2005) In search of higher education. Biomed Instrum Technol 39(6):451–453

    PubMed  Google Scholar 

  44. Gardini S, Cloninger CR, Venneri A (2009) Individual differences in personality traits reflect structural variance in specific brain regions. Brain Res Bull 79:265–270

    Article  PubMed  Google Scholar 

  45. Yamasue H, Abe O, Suga M et al (2008) Gender-common and specific neuroanatomical basis of human anxiety-related personality traits. Cereb Cortex 18:46–52

    Article  PubMed  Google Scholar 

  46. Mincic AM (2015) Neuroanatomical correlates of negative emotionality-related traits: a systematic review and meta-analysis. Neuropsychologia 77:97–118

    Article  PubMed  Google Scholar 

  47. Riccelli R, Toschi N, Nigro S et al (2017) Surface-based morphometry reveals the neuroanatomical basis of the five-factor model of personality. Soc Cogn Affect Neurosci 12(4):671–684. pii: nsw175

    PubMed  PubMed Central  Google Scholar 

  48. Rauch SL, Milad MR, Orr SP et al (2005) Orbito-frontal thickness, retention of fear extinction, and extraversion. Neuroreport 16:1909–1912

    Article  PubMed  Google Scholar 

  49. Cremers H, van Tol MJ, Roelofs K et al (2011) Extraversion is linked to volume of the orbitofrontal cortex and amygdala. PLoS One 6(12):e28421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kapogiannis D, Sutin A, Davatzikos C et al (2013) The five factors of personality and regional cortical variability in the Baltimore longitudinal study of aging. Hum Brain Mapp 34(11):2829–2840

    Article  PubMed  Google Scholar 

  51. Canli T, Zhao Z, Desmond JE et al (2001) An fMRI study of personality influences on brain reactivity to emotional stimuli. Behav Neurosci 115(1):33–42

    Article  CAS  PubMed  Google Scholar 

  52. Coutinho JF, Sampaio A, Ferreira M et al (2013) Brain correlates of pro-social personality traits: a voxel-based morphometry study. Brain Imaging Behav 7(3):293–299

    Article  PubMed  Google Scholar 

  53. Amodio DM, Frith CD (2006) Meeting of minds: the medial frontal cortex and social cognition. Nat Rev Neurosci 7:268–277

    Article  CAS  PubMed  Google Scholar 

  54. Mitchell JP, Banaji MR, Macrae CN (2005) General and specific contributions of the medial prefrontal cortex to knowledge about mental states. NeuroImage 28(4):757–762

    Article  PubMed  Google Scholar 

  55. Benoit RG, Gilbert SJ, Volle E et al (2010) When I think about me and simulate you: medial rostral prefrontal cortex and self-referential processes. NeuroImage 50(3):1340–1349

    Article  PubMed  Google Scholar 

  56. Johnson DL, Wiebe JS, Gold SM et al (1999) Cerebral blood flow and personality: a positron emission tomography study. Am J Psychiatry 156(2):252–257

    CAS  PubMed  Google Scholar 

  57. Canli T (2004) Functional brain mapping of extraversion and neuroticism: learning from individual differences in emotion processing. J Pers 72(6):1105–1132

    Article  PubMed  Google Scholar 

  58. O’Gorman RL, Kumari V, Williams SC et al (2006) Personality factors correlate with regional cerebral perfusion. NeuroImage 31(2):489–495

    Article  PubMed  Google Scholar 

  59. Wright CI, Williams D, Feczko E et al (2006) Neuroanatomical correlates of extraversion and neuroticism. Cereb Cortex 16(12):1809–1819

    Article  PubMed  Google Scholar 

  60. Grimm S, Schubert F, Jaedke M et al (2012) Prefrontal cortex glutamate and extraversion. Soc Cogn Affect Neurosci 7:811–818

    Article  PubMed  Google Scholar 

  61. Peña-Gómez C, Vidal-Piñeiro D, Clemente IC et al (2011) Down-regulation of negative emotional processing by transcranial direct current stimulation: effects of personality characteristics. PLoS One 6:e22812

    Article  PubMed  PubMed Central  Google Scholar 

  62. Roppongi T, Nakamura M, Asami T et al (2010) Posterior orbitofrontal sulcogyral pattern associated with orbitofrontal cortex volume reduction and anxiety trait in panic disorder. Psychiatry Clin Neurosci 64(3):318–326

    Article  PubMed  Google Scholar 

  63. van Tol MJ, van der Wee NJ, van den Heuvel OA (2010) Structural MRI correlates for vulnerability and resilience to major depressive disorder. J Psychiatry Neurosci 36(1):15–22

    Google Scholar 

  64. Lacerda AL, Keshavan MS, Hardan AY et al (2004) Anatomic evaluation of the orbitofrontal cortex in major depressive disorder. Biol Psychiatry 55(4):353–358

    Article  PubMed  Google Scholar 

  65. Haas BW, Constable RT, Canli T (2008) Stop the sadness: neuroticism is associated with sustained medial prefrontal cortex response to emotional facial expressions. NeuroImage 42(1):385–392

    Article  PubMed  PubMed Central  Google Scholar 

  66. Baur V, Hänggi J, Jäncke L (2012) Volumetric associations between uncinate fasciculus, amygdala, and trait anxiety. BMC Neurosci 13:4

    Article  PubMed  PubMed Central  Google Scholar 

  67. Bjørnebekk AM, Fjell KB, Walhovd H (2013) Neuronal correlates of the five factor model (FFM) of human personality: multimodal imaging in a large healthy sample. NeuroImage 65:194–208

    Article  PubMed  Google Scholar 

  68. Kim MJ, Whalen PJ (2009) The structural integrity of an amygdala-prefrontal pathway predicts trait anxiety. J Neurosci 29:11614–11618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Blankstein U, Chen JY, Mincic AM (2009) The complex minds of teenagers: neuroanatomy of personality differs between sexes. Neuropsychologia 47(2):599–603

    Article  PubMed  Google Scholar 

  70. Wright CI, Feczko E, Dickerson B et al (2007) Neuroanatomical correlates of personality in the elderly. NeuroImage 35:263–272

    Article  PubMed  PubMed Central  Google Scholar 

  71. Grieve SM, Clark CR, Williams LM (2005) Preservation of limbic and paralimbic structures in aging. Hum Brain Mapp 25:391–401

    Article  PubMed  Google Scholar 

  72. Cohen MX, Schoene-Bake JC, Elger CE et al (2009) Connectivity-based segregation of the human striatum predicts personality characteristics. Nat Neurosci 12:32–34

    Article  CAS  PubMed  Google Scholar 

  73. Wittmann BC, Daw ND, Seymour B et al (2008) Striatal activity underlies novelty-based choice in humans. Neuron 58:967–973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Goldsmith HH, Lemery KS (2000) Linking temperamental fearfulness and anxiety symptoms: a behavior-genetic perspective. Biol Psychiatry 48(12):1199–1209

    Article  CAS  PubMed  Google Scholar 

  75. Goldsmith HH, Davidson RJ (2004) Disambiguating the components of emotion regulation. Child Dev 75(2):361–365

    Article  CAS  PubMed  Google Scholar 

  76. Cain CK, LeDoux JE (2007) Escape from fear: a detailed behavioral analysis of two atypical responses reinforced by CS termination. J Exp Psychol Anim Behav Process 33(4):451–463

    Article  PubMed  Google Scholar 

  77. McNab F, Klingberg T (2008) Prefrontal cortex and basal ganglia control access to working memory. Nat Neurosci 11(1):103–107

    Article  CAS  PubMed  Google Scholar 

  78. Koziol LF, Budding DE, Chidekel D (2010) Adaptation, expertise, and giftedness: towards an understanding of cortical subcortical, and cerebellar network contributions. Cerebellum 9:499–529

    Article  PubMed  Google Scholar 

  79. Laricchiuta D, Petrosini L, Piras F et al (2014) Linking novelty seeking and harm avoidance personality traits to basal ganglia: volumetry and mean diffusivity. Brain Struct Funct 219:793–803

    Article  PubMed  Google Scholar 

  80. Montag C, Markett S, Basten U et al (2010) Epistasis of the DRD2/ANKK1 Taq Ia and the BDNF Val66Met polymorphism impacts novelty seeking and harm avoidance. Neuropsychopharmacology 35(9):1860–1867

    Article  PubMed  PubMed Central  Google Scholar 

  81. Fitzgerald PB, Laird AR, Maller J et al (2008) A meta-analytic study of changes in brain activation in depression. Hum Brain Mapp 29:683–695

    Article  PubMed  PubMed Central  Google Scholar 

  82. Liu Z, Xu C, Xu Y et al (2010) Decreased regional homogeneity in insula and cerebellum: a resting-state fMRI study in patients with major depression and subjects at high risk for major depression. Psychiatry Res 182:211–215

    Article  PubMed  Google Scholar 

  83. Schutter DJ, Koolschijn PC, Peper JS et al (2012) The cerebellum link to neuroticism: a volumetric MRI association study in healthy volunteers. PLoS One 7(5):e37252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Picerni E, Petrosini L, Piras F et al (2013) New evidence for the cerebellar involvement in personality traits. Front Behav Neurosci 7:133

    Article  PubMed  PubMed Central  Google Scholar 

  85. Stoodley CJ, Schmahmann JD (2010) Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex 46:831–844

    Article  PubMed  PubMed Central  Google Scholar 

  86. Kelly RM, Strick PL (2003) Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci 23:8432–8444

    CAS  PubMed  Google Scholar 

  87. McIntosh AM, Bastin ME, Luciano M (2013) Neuroticism, depressive symptoms and white-matter integrity in the Lothian birth cohort 1936. Psychol Med 43:1197–1206

    Article  CAS  PubMed  Google Scholar 

  88. Friston KJ, Buechel C, Fink GR et al (1997) Psychophysiological and modulatory interactions in neuroimaging. NeuroImage 6(3):218–229

    Article  CAS  PubMed  Google Scholar 

  89. Friston KJ, Harrison L, Penny W (2003) Dynamic causal modelling. NeuroImage 19(4):1273–1302

    Article  CAS  PubMed  Google Scholar 

  90. Büchel C, Coull JT, Friston KJ (1999) The predictive value of changes in effective connectivity for human learning. Science 283(5407):1538–1541

    Article  PubMed  Google Scholar 

  91. Büchel C, Friston K (2000) Assessing interactions among neuronal systems using functional neuroimaging. Neural Netw 13(8–9):871–882

    Article  PubMed  Google Scholar 

  92. Canli T, Amin Z, Haas B et al (2004) A double dissociation between mood states and personality traits in the anterior cingulate. Behav Neurosci 118(5):897–904

    Article  PubMed  Google Scholar 

  93. Pereira A, Furlan FA (2010) Astrocytes and human cognition: modeling information, integration and modulation of neuronal activity. Prog Neurobiol 92:405–420

    Article  PubMed  Google Scholar 

  94. Barres BA (2008) The mystery and magic of glia: a perspective on their roles in health and disease. Neuron 60:430–440

    Article  CAS  PubMed  Google Scholar 

  95. Edgar N, Sibille E (2012) A putative functional role for oligodendrocytes in mood regulation. Transl Psychiatry 2:e109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Molofsky AV, Krencik R, Ullian EM (2012) Astrocytes and disease: a neurodevelopmental perspective. Genes Dev 26:891–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sacher J, Neumann J, Fünfstück T et al (2012) Mapping the depressed brain: a meta-analysis of structural and functional alterations in major depressive disorder. J Affect Disord 140(2):142–148

    Article  PubMed  Google Scholar 

  98. De Young CG (2010) Personality neuroscience and the biology of traits. Soc Personal Psychol Compass 10:1165–1180

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Petrosini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Petrosini, L., Cutuli, D., Picerni, E., Laricchiuta, D. (2018). Personality Is Reflected in Brain Morphometry. In: Spalletta, G., Piras, F., Gili, T. (eds) Brain Morphometry. Neuromethods, vol 136. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7647-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7647-8_24

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7645-4

  • Online ISBN: 978-1-4939-7647-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics