Skip to main content

Gene Manipulation with Micro RNAs at Single-Human Cancer Cell

  • Protocol
  • First Online:
MicroRNA Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1733))

Abstract

Micro RNAs (miRNAs) are small RNAs processed from longer precursor RNA transcripts that can fold back on themselves to form Watson-Crick paired hairpin structures. Once processed from the longer molecule, the small RNA is much too short to code for proteins but can play other very important roles, like gene regulation. The phenomenon of RNA interference was initially observed by Napoli and Jorgensen in transgenic petunia flowers, where gene suppression was observed after introducing a transgene of chalcone synthase (CHS) belonging to the flavonoid biosynthesis pathway. miRNAs were first discovered for their roles in development but it has quickly become evident that they have causal roles in cancer as well. miRNA can also be used to manipulate genes for the investigation of carcinogenesis. Single-cell transcriptome profiling studies in our laboratory suggest that carcinogenesis often is the result of the malfunction of multiple members of a molecular pathway. Here, we describe a protocol to manipulate multiple cancer-related genes in a single human cell to investigate how multiple genes interact during carcinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-supression of homologous genes in trans. Plant Cell 2:279–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Romano N, Macino G (1992) Quelling: transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences. Mol Microbiol 6(22):3343–3353

    Article  CAS  PubMed  Google Scholar 

  3. Kim VN (2005) MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 6(5):376–385

    Article  CAS  PubMed  Google Scholar 

  4. Parmar R, Willoughby JL, Liu J, Foster DJ, Brigham B, Theile CS, Charisse K, Akinc A, Guidry E, Pei Y, Strapps W, Cancilla M, Stanton MG, Rajeev KG, Sepp-Lorenzino L, Manoharan M, Meyers R, Maier MA, Jadhav V (2016) 5’-(E)-Vinylphosphonate: a stable phosphate mimic can improve the RNAi activity of siRNA-GalNAc conjugates. Chembiochem 17:985–989

    Google Scholar 

  5. Lingel A, Simon B, Izaurralde E, Sattler M (2004) Nucleic acid 3’-end recognition by the Argonaute2 PAZ domain. Nat Struct Mol Biol 11:576–577

    Google Scholar 

  6. Liu J, Carmell MA, Rivas FV, Marsden CG, Thomson JM, Song JJ, Hammond SM, Joshua-Tor L, Hannon GJ (2004) Argonaute2 is the catalytic engine of mammalian RNAi. Science 305:1437–1441

    Article  CAS  PubMed  Google Scholar 

  7. Rivas FV, Tolia NH, Song JJ, Aragon JP, Liu J, Hannon GJ, Joshua-Tor L (2005) Purified Argonaute2 and an siRNA form recombinant human RISC. Nat Struct Mol Biol 12:340–349

    Article  CAS  PubMed  Google Scholar 

  8. MacRae IJ, Ma E, Zhou M, Robinson CV, Doudna JA (2008) In vitro reconstitution of the human RISC-loading complex. Proc Natl Acad Sci U S A 105:512–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  10. Macfarlane LA, Murphy PR (2010) MicroRNA: biogenesis, function and role in cancer. Curr Genomics 11:537–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cheng CY, Hwang CI, Corney DC, Flesken-Nikitin A, Jiang L, Oner GM, Munroe RJ, Schimenti JC, Hermeking H, Nikitin AY (2014) miR-34 cooperates with p53 in suppression of prostate cancer by joint regulation of stem cell compartment. Cell Rep 6:1000–1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kim NH, Kim HS, Kim NG, Lee I, Choi HS, Li XY, Kang SE, Cha SY, Ryu JK, Na JM, Park C, Kim K, Lee S, Gumbiner BM, Yook JI, Weiss SJ (2011) p53 and microRNA-34 are suppressors of canonical Wnt signaling. Sci Signal 4:ra71

    PubMed  PubMed Central  Google Scholar 

  13. Zhang DG, Zheng JN, Pei DS (2014) P53/microRNA-34-induced metabolic regulation: new opportunities in anticancer therapy. Mol Cancer 13:115

    Article  PubMed  PubMed Central  Google Scholar 

  14. Achari C, Winslow S, Ceder Y, Larsson C (2014) Expression of miR-34c induces G2/M cell cycle arrest in breast cancer cells. BMC Cancer 14:538

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zhang YH, Wang QQ, Li H, Ye T, Gao F, Liu YC (2016) miR-124 radiosensitizes human esophageal cancer cell TE-1 by targeting CDK4. Genet Mol Res 15:2–10

    Google Scholar 

  16. Jain CK, Gupta A, Dogra N, Kumar VS, Wadhwa G, Sharma SK (2014) MicroRNA therapeutics: the emerging anticancer strategies. Recent Pat Anticancer Drug Discov 9:286–296

    Article  CAS  PubMed  Google Scholar 

  17. Peek AS, Behlke MA (2007) Design of active small interfering RNAs. Curr Opin Mol Ther 9:110–118

    CAS  PubMed  Google Scholar 

  18. Freshney RI (2016) Culture of animal cells: a manual of basic technique and specialized applications. Wiley-Blackwell, Hoboken, NJ

    Google Scholar 

  19. Landen CN, Chavez-Reyes A, Bucana C, Schmandt R, Deavers MT, Lopez-Berestein G, Sood AK (2005) Therapeutic Eph A2 gene targeting in vivo using neutral liposomal small interfering RNA delivery. Cancer Res 65:6910–6918

    Article  CAS  PubMed  Google Scholar 

  20. Mahmood T, Yang PC (2012) Western blot: technique, theory, and trouble shooting. N Am J Med Sci 4:429–434

    Article  PubMed  PubMed Central  Google Scholar 

  21. Rao DD, Vorhies JS, Senzer N, Nemunaitis J (2009) siRNA vs. shRNA: similarities and differences. Adv Drug Deliv Rev 61:746–759

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants R01CA197903 and R01CA1645093 from the National Institutes of Health, USA (J.F.Z.), and CHE1213161 from the National Science Foundation USA (J.F.Z.), and an internal grant from the University of Southern California (J.F.Z. and P.P.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang F. Zhong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Stucky, A., Chen, X., Zhong, J.F. (2018). Gene Manipulation with Micro RNAs at Single-Human Cancer Cell. In: Ying, SY. (eds) MicroRNA Protocols . Methods in Molecular Biology, vol 1733. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7601-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7601-0_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7600-3

  • Online ISBN: 978-1-4939-7601-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics