Skip to main content

Relevance of Engineered Scaffolds for Cartilage Repair

  • Chapter
  • First Online:
Articular Cartilage of the Knee

Abstract

The adult articular cartilage has poor intrinsic healing capacity due to its avascular, aneural, and lymphatic nature. As such, the repair of cartilage defects in patient’s knees presents a great challenge to the orthopedic surgeon. If left untreated, cartilage defects can lead to osteoarthritis (OA) resulting in chronic pain and disability. In recent years, the use of tissue engineering (TE) strategies and advances in biochemical and biomechanical properties of cartilage scaffolds have led to the development of a more functional cartilage repair tissue. This chapter will highlight the characteristic features of a successful cartilage scaffold and review the scaffolds that are currently being investigated for clinical used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Simon TM, Jackson DW. Articular cartilage: injury pathways and treatment options. Sports Med Arthrosc. 2006;14(3):146–54.

    Article  PubMed  Google Scholar 

  2. Mankin HJ. The response of articular cartilage to mechanical injury. J Bone Joint Surg Am. 1982;64(3):460–6.

    Article  CAS  PubMed  Google Scholar 

  3. Marlovits S, et al. Cartilage repair: generations of autologous chondrocyte transplantation. Eur J Radiol. 2006;57(1):24–31.

    Article  PubMed  Google Scholar 

  4. Ahmed TA, Hincke MT. Strategies for articular cartilage lesion repair and functional restoration. Tissue Eng Part B Rev. 2010;16(3):305–29.

    Article  CAS  PubMed  Google Scholar 

  5. Frenkel SR, et al. Effects of nitric oxide on chondrocyte migration, adhesion, and cytoskeletal assembly. Arthritis Rheum. 1996;39(11):1905–12.

    Article  CAS  PubMed  Google Scholar 

  6. Frenkel SR, Di Cesare PE. Scaffolds for articular cartilage repair. Ann Biomed Eng. 2004;32(1):26–34.

    Article  PubMed  Google Scholar 

  7. Mankin H, Mow V, Buckwalter J, Iannotti J, Ratcliffe A. Orthopaedic basic science. In: Simon SR, editor. Form and function of articular cartilage. Rosemont, IL: American Academy of Orthopaedic Surgeon; 1994. p. 443–70.

    Google Scholar 

  8. Buckwalter JA, Mankin HJ. Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation. Instr Course Lect. 1998;47:487–504.

    CAS  PubMed  Google Scholar 

  9. Temenoff JS, Mikos AG. Review: tissue engineering for regeneration of articular cartilage. Biomaterials. 2000;21(5):431–40.

    Article  CAS  PubMed  Google Scholar 

  10. Pridie KH. A method of resurfacing osteoarthritic knee joints. J Bone Joint Surg (Br). 1959;41(3):618–9.

    Google Scholar 

  11. Steadman J, Rodkey W, Singleton S, Briggs K. Microfracture technique for full-thickness chondral defects: technique and clinical results. Oper Tech Orthop. 1997;7:300–4.

    Article  Google Scholar 

  12. Steadman JR, Rodkey WG, Rodrigo JJ. Microfracture: surgical technique and rehabilitation to treat chondral defects. Clin Orthop Relat Res. 2001;391 Suppl:S362–9. Review. PMID: 11603719.

    Article  Google Scholar 

  13. Frisbie DD, et al. Arthroscopic subchondral bone plate microfracture technique augments healing of large chondral defects in the radial carpal bone and medial femoral condyle of horses. Vet Surg. 1999;28(4):242–55.

    Article  CAS  PubMed  Google Scholar 

  14. Steadman JR, et al. The microfracture technique in the treatment of full-thickness chondral lesions of the knee in National Football League players. J Knee Surg. 2003;16(2):83–6.

    PubMed  Google Scholar 

  15. Buckwalter JA, Mankin HJ. Articular cartilage: tissue design and chondrocyte-matrix interactions. Instr Course Lect. 1998;47:477–86.

    CAS  PubMed  Google Scholar 

  16. Buckwalter JA, Mankin HJ. Articular cartilage repair and transplantation. Arthritis Rheum. 1998;41(8):1331–42.

    Article  CAS  PubMed  Google Scholar 

  17. Hunziker EB. Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthritis Cartilage. 2002;10(6):432–63.

    Article  CAS  PubMed  Google Scholar 

  18. Grande D, Pitman M, Peterson L, et al. The repair of experimentally produced defects in rabbit articular cartilage by autologous chondrocyte transplantation. J Orthop Res. 1989;7:208–19.

    Article  CAS  PubMed  Google Scholar 

  19. Brittberg M, et al. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med. 1994;331(14):889–95.

    Article  CAS  PubMed  Google Scholar 

  20. Haleem AMC, Chu CR. Advances in tissue engineering techniques for articular cartilage repair. Oper Tech Orthop. 2010;20(2):76–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Williams Iii RJ, Brophy RH. Cartilage repair procedures: clinical approach and decision making. Instr Course Lect. 2008;57:553–61.

    PubMed  Google Scholar 

  22. Brittberg M. Cell carriers as the next generation of cell therapy for cartilage repair: a review of the matrix-induced autologous chondrocyte implantation procedure. Am J Sports Med. 2010;38(6):1259–71.

    Article  PubMed  Google Scholar 

  23. Kessler MW, Grande DA. Tissue engineering and cartilage. Organogenesis. 2008;4(1):28–32.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zhang L, Hu J, Athanasiou KA. The role of tissue engineering in articular cartilage repair and regeneration. Crit Rev Biomed Eng. 2009;37(1–2):1–57.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kock L, van Donkelaar CC, Ito K. Tissue engineering of functional articular cartilage: the current status. Cell Tissue Res. 2012;347(3):613–27.

    Article  CAS  PubMed  Google Scholar 

  26. Danisovic L, et al. The tissue engineering of articular cartilage: cells, scaffolds and stimulating factors. Exp Biol Med (Maywood). 2012;237(1):10–7.

    Article  CAS  Google Scholar 

  27. Grande DA, Breitbart AS, Mason J, Paulino C, Laser J, Schwartz RE. Cartilage tissue engineering: current limitations and solutions. Clin Orthop Relat Res. 1999;367 Suppl:S176–85. PMID: 10546646.

    Article  Google Scholar 

  28. Daher RJ, et al. New methods to diagnose and treat cartilage degeneration. Nat Rev Rheumatol. 2009;5(11):599–607.

    Article  PubMed  Google Scholar 

  29. Chiang H, Jiang CC. Repair of articular cartilage defects: review and perspectives. J Formos Med Assoc. 2009;108(2):87–101.

    Article  CAS  PubMed  Google Scholar 

  30. Gugjoo MB, Amarpal SGT, Aithal HP, Kinjavdekar P. Cartilage tissue engineering: role of mesenchymal stem cells along with growth factors & scaffolds. Indian J Med Res. 2016;144(3):339–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fortier LA, Barker JU, Strauss EJ, et al. The role of growth factors in cartilage repair. Clin Orthop Relat Res. 2011;469(10):2706–15.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Gugjoo MB, Amarpal, Abdelbaset-Ismail A, et al. Mesenchymal stem cells with IGF-1 and TGF- β1 in laminin gel for osteochondral defects in rabbits. Biomed Pharmacother. 2017;93:1165–74.

    Article  CAS  PubMed  Google Scholar 

  33. Huang K, Li Q, Li Y, et al. Cartilage tissue regeneration: the roles of cells, stimulating factors and scaffolds. Curr Stem Cell Res Ther. 2018;13(7):547–67.

    Article  CAS  PubMed  Google Scholar 

  34. Yu DA, Han J, Kim BS. Stimulation of chondrogenic differentiation of mesenchymal stem cells. Int J Stem Cells. 2012;5(1):16–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mierisch CM, et al. Transforming growth factor-beta in calcium alginate beads for the treatment of articular cartilage defects in the rabbit. Arthroscopy. 2002;18(8):892–900.

    Article  PubMed  Google Scholar 

  36. Brochhausen C, Lehmann M, Halstenberg S, et al. Signalling molecules and growth factors for tissue engineering of cartilage-what can we learn from the growth plate? J Tissue Eng Regen Med. 2009;3(6):416–29.

    Article  CAS  PubMed  Google Scholar 

  37. Mierisch CM, et al. Chondrocyte transplantation into articular cartilage defects with use of calcium alginate: the fate of the cells. J Bone Joint Surg Am. 2003;85-A(9):1757–67.

    Article  Google Scholar 

  38. Chenite A, et al. Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials. 2000;21(21):2155–61.

    Article  CAS  PubMed  Google Scholar 

  39. Ge Z, et al. Functional biomaterials for cartilage regeneration. J Biomed Mater Res A. 2012;100(9):2526–36.

    PubMed  Google Scholar 

  40. Stoop R. Smart biomaterials for tissue engineering of cartilage. Injury. 2008;39(Suppl 1):S77–87.

    Article  PubMed  Google Scholar 

  41. Safran MR, Kim H, Zaffagnini S. The use of scaffolds in the management of articular cartilage injury. J Am Acad Orthop Surg. 2008;16(6):306–11.

    Article  PubMed  Google Scholar 

  42. Cao, Z., Dou, C.; Dong S., Scaffolding biomaterials for cartilage regeneration. J Nanomater, 2014. 2014: p. 1–8.

    Article  CAS  Google Scholar 

  43. Lu L, et al. Biodegradable polymer scaffolds for cartilage tissue engineering. Clin Orthop Relat Res. 2001;(391 Suppl):S251–70.

    Google Scholar 

  44. Kemppainen JM, Hollister SJ. Differential effects of designed scaffold permeability on chondrogenesis by chondrocytes and bone marrow stromal cells. Biomaterials. 2010;31(2):279–87.

    Article  CAS  PubMed  Google Scholar 

  45. Abedalwafa M, Wang F, Wang L, Li C. Biodegradable poly-epsilon-caprolactone (PCL) for tissue engineering applications : a review. Rev Adv Mater Sci. 2013;34:123–40.

    CAS  Google Scholar 

  46. Pan Z, et al. Effect of porosities of bilayered porous scaffolds on spontaneous osteochondral repair in cartilage tissue engineering. Regen Biomater. 2015;2(1):9–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Izadifar Z, Chen X, Kulyk W. Strategic design and fabrication of engineered scaffolds for articular cartilage repair. J Funct Biomater. 2012;3(4):799–838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rowland CR, Colucci LA, Guilak F. Fabrication of anatomically-shaped cartilage constructs using decellularized cartilage-derived matrix scaffolds. Biomaterials. 2016;91:57–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Coombes AG, Rizzi SC, Williamson M, et al. Precipitation casting of polycaprolactone for applications in tissue engineering and drug delivery. Biomaterials. 2004;25(2):315–25.

    Article  CAS  PubMed  Google Scholar 

  50. Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Prog Polym Sci. 2007;32(8-9):762–98.

    Article  CAS  Google Scholar 

  51. Anseth KS, Bowman CN, Brannon-Peppas L. Mechanical properties of hydrogels and their experimental determination. Biomaterials. 1996;17(17):1647–57.

    Article  CAS  PubMed  Google Scholar 

  52. Risbud MV, Sittinger M. Tissue engineering: advances in in vitro cartilage generation. Trends Biotechnol. 2002;20(8):351–6.

    Article  CAS  PubMed  Google Scholar 

  53. Kalkan R, Nwekwo CW, Adali T. The use of scaffolds in cartilage regeneration. Crit Rev Eukaryot Gene Expr. 2018;28(4):343–8.

    Google Scholar 

  54. Stenzel KH, Miyata T, Rubin AL. Collagen as a biomaterial. Annu Rev Biophys Bioeng. 1974;3(0):231–53.

    Article  CAS  PubMed  Google Scholar 

  55. Kleinman HK, Klebe RJ, Martin GR. Role of collagenous matrices in the adhesion and growth of cells. J Cell Biol. 1981;88(3):473–85.

    Article  CAS  PubMed  Google Scholar 

  56. Kleinman HK, et al. Binding of cell attachment protein to collagen: effect of chemical modifications. Ann N Y Acad Sci. 1978;312:436–8.

    Article  CAS  PubMed  Google Scholar 

  57. Getgood A, et al. Articular cartilage tissue engineering: today's research, tomorrow's practice? J Bone Joint Surg Br. 2009;91(5):565–76.

    Article  CAS  PubMed  Google Scholar 

  58. Frenkel SR, et al. Chondrocyte transplantation using a collagen bilayer matrix for cartilage repair. J Bone Joint Surg Br. 1997;79(5):831–6.

    Article  CAS  PubMed  Google Scholar 

  59. Jiang LB, Su DH, Liu P, et al. Shape-memory collagen scaffold for enhanced cartilage regeneration: native collagen versus denatured collagen. Osteoarthritis Cartilage. 2018;26(10):1389–99.

    Article  PubMed  Google Scholar 

  60. Dorotka R, et al. Marrow stimulation and chondrocyte transplantation using a collagen matrix for cartilage repair. Osteoarthritis Cartilage. 2005;13(8):655–64.

    Article  CAS  PubMed  Google Scholar 

  61. Dorotka R, et al. Repair of articular cartilage defects treated by microfracture and a three-dimensional collagen matrix. Biomaterials. 2005;26(17):3617–29.

    Article  CAS  PubMed  Google Scholar 

  62. Hendrickson DA, et al. Chondrocyte-fibrin matrix transplants for resurfacing extensive articular cartilage defects. J Orthop Res. 1994;12(4):485–97.

    Article  CAS  PubMed  Google Scholar 

  63. Fortier LA, et al. Coordinate upregulation of cartilage matrix synthesis in fibrin cultures supplemented with exogenous insulin-like growth factor-I. J Orthop Res. 1999;17(4):467–74.

    Article  CAS  PubMed  Google Scholar 

  64. Fortier LA, Nixon AJ, Lust G. Phenotypic expression of equine articular chondrocytes grown in three-dimensional cultures supplemented with supraphysiologic concentrations of insulin-like growth factor-1. Am J Vet Res. 2002;63(2):301–5.

    Article  CAS  PubMed  Google Scholar 

  65. Nixon AJ, Saxer RA, Brower-Toland BD. Exogenous insulin-like growth factor-I stimulates an autoinductive IGF-I autocrine/paracrine response in chondrocytes. J Orthop Res. 2001;19(1):26–32.

    Article  CAS  PubMed  Google Scholar 

  66. Nixon AJ, et al. Enhanced repair of extensive articular defects by insulin-like growth factor-I-laden fibrin composites. J Orthop Res. 1999;17(4):475–87.

    Article  CAS  PubMed  Google Scholar 

  67. Puertas-Bartolomé M, Benito-Garzón L, Olmeda-Lozano M. In situ cross-linkable polymer systems and composites for osteochondral regeneration. Adv Exp Med Biol. 2018;1058:327–55.

    Article  PubMed  CAS  Google Scholar 

  68. Ribeiro VP, Pina S, Oliveira JM, Reis RL. Silk fibroin-based hydrogels and scaffolds for osteochondral repair and regeneration. Adv Exp Med Biol. 2018;1058:305–25.

    Article  CAS  PubMed  Google Scholar 

  69. Conrad B, Han LH, Yang F. Gelatin-based microribbon hydrogels accelerate cartilage formation by mesenchymal stem cells in 3D. Tissue Eng Part A. 2018; https://doi.org/10.1089/ten.TEA.2018.0011. [Epub ahead of print].

  70. Bonaventure J, et al. Reexpression of cartilage-specific genes by dedifferentiated human articular chondrocytes cultured in alginate beads. Exp Cell Res. 1994;212(1):97–104.

    Article  CAS  PubMed  Google Scholar 

  71. Diduch DR, et al. Marrow stromal cells embedded in alginate for repair of osteochondral defects. Arthroscopy. 2000;16(6):571–7.

    Article  CAS  PubMed  Google Scholar 

  72. Chen WY, Abatangelo G. Functions of hyaluronan in wound repair. Wound Repair Regen. 1999;7(2):79–89.

    Article  CAS  PubMed  Google Scholar 

  73. Marcacci M, et al. Articular cartilage engineering with Hyalograft C: 3-year clinical results. Clin Orthop Relat Res. 2005;435:96–105.

    Article  Google Scholar 

  74. Kujawa MJ, Caplan AI. Hyaluronic acid bonded to cell-culture surfaces stimulates chondrogenesis in stage 24 limb mesenchyme cell cultures. Dev Biol. 1986;114(2):504–18.

    Article  CAS  PubMed  Google Scholar 

  75. Campoccia D, et al. Semisynthetic resorbable materials from hyaluronan esterification. Biomaterials. 1998;19(23):2101–27.

    Article  CAS  PubMed  Google Scholar 

  76. Aigner J, et al. Cartilage tissue engineering with novel nonwoven structured biomaterial based on hyaluronic acid benzyl ester. J Biomed Mater Res. 1998;42(2):172–81.

    Article  CAS  PubMed  Google Scholar 

  77. Brun P, et al. Chondrocyte aggregation and reorganization into three-dimensional scaffolds. J Biomed Mater Res. 1999;46(3):337–46.

    Article  CAS  PubMed  Google Scholar 

  78. Grigolo B, et al. Tissue engineering for cartilage repair: in vitro properties of a hyaluronan-derivative. Chir Organi Mov. 2003;88(4):351–5.

    CAS  PubMed  Google Scholar 

  79. Grigolo B, et al. Evidence for redifferentiation of human chondrocytes grown on a hyaluronan-based biomaterial (HYAff 11): molecular, immunohistochemical and ultrastructural analysis. Biomaterials. 2002;23(4):1187–95.

    Article  CAS  PubMed  Google Scholar 

  80. Grigolo B, et al. Transplantation of chondrocytes seeded on a hyaluronan derivative (hyaff-11) into cartilage defects in rabbits. Biomaterials. 2001;22(17):2417–24.

    Article  CAS  PubMed  Google Scholar 

  81. Knudson W, et al. Hyaluronan oligosaccharides perturb cartilage matrix homeostasis and induce chondrocytic chondrolysis. Arthritis Rheum. 2000;43(5):1165–74.

    Article  CAS  PubMed  Google Scholar 

  82. Suh JK, Matthew HW. Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials. 2000;21(24):2589–98.

    Article  CAS  PubMed  Google Scholar 

  83. Lahiji A, et al. Chitosan supports the expression of extracellular matrix proteins in human osteoblasts and chondrocytes. J Biomed Mater Res. 2000;51(4):586–95.

    Article  CAS  PubMed  Google Scholar 

  84. Yuan D, Chen Z, Lin T, Luo X, Dong H, Feng G. Cartilage tissue engineering using combination of chitosan hydrogel and mesenchymal stem cells. J Chem. 2015;2015. 6 pages.

    Google Scholar 

  85. Gaserod O, Smidsrod O, Skjak-Braek G. Microcapsules of alginate-chitosan--I. A quantitative study of the interaction between alginate and chitosan. Biomaterials. 1998;19(20):1815–25.

    Article  CAS  PubMed  Google Scholar 

  86. Denuziere A, et al. Chitosan-chondroitin sulfate and chitosan-hyaluronate polyelectrolyte complexes: biological properties. Biomaterials. 1998;19(14):1275–85.

    Article  CAS  PubMed  Google Scholar 

  87. Oryan A, Sahvieh S. Effectiveness of chitosan scaffold in skin, bone and cartilage healing. Int J Biol Macromol. 2017;104(Pt A):1003–11.

    Article  CAS  PubMed  Google Scholar 

  88. Shamekhi MA, Rabiee A, Mirzadeh H, et al. Fabrication and characterization of hydrothermal cross-linked chitosan porous scaffolds for cartilage tissue engineering applications. Mater Sci Eng C Mater Biol Appl. 2017;80:532–42.

    Article  CAS  PubMed  Google Scholar 

  89. Comblain F, Rocasalbas G, Gauthier S, Henrotin Y. Chitosan: a promising polymer for cartilage repair and viscosupplementation. Biomed Mater Eng. 2017;28(s1):S209–15.

    CAS  PubMed  Google Scholar 

  90. Hoemann CD, et al. Chitosan-glycerol phosphate/blood implants improve hyaline cartilage repair in ovine microfracture defects. J Bone Joint Surg Am. 2005;87(12):2671–86.

    Article  PubMed  Google Scholar 

  91. Hoemann CD, et al. Chitosan-glycerol phosphate/blood implants elicit hyaline cartilage repair integrated with porous subchondral bone in microdrilled rabbit defects. Osteoarthritis Cartilage. 2007;15(1):78–89.

    Article  CAS  PubMed  Google Scholar 

  92. Villarreal-Gomez LJ, et al. Electrospinning as a powerful technique for biomedical applications: a critically selected survey. J Biomater Sci Polym Ed. 2016;27(2):157–76.

    Article  CAS  PubMed  Google Scholar 

  93. Cohen SB, et al. The use of absorbable co-polymer pads with alginate and cells for articular cartilage repair in rabbits. Biomaterials. 2003;24(15):2653–60.

    Article  CAS  PubMed  Google Scholar 

  94. Capito RM, Spector M. Scaffold-based articular cartilage repair. IEEE Eng Med Biol Mag. 2003;22(5):42–50.

    Article  PubMed  Google Scholar 

  95. Caterson EJ, et al. Polymer/alginate amalgam for cartilage-tissue engineering. Ann N Y Acad Sci. 2002;961:134–8.

    Article  CAS  PubMed  Google Scholar 

  96. Elisseeff J, et al. Controlled-release of IGF-I and TGF-beta1 in a photopolymerizing hydrogel for cartilage tissue engineering. J Orthop Res. 2001;19(6):1098–104.

    Article  CAS  PubMed  Google Scholar 

  97. Gray ML, et al. Mechanical and physiochemical determinants of the chondrocyte biosynthetic response. J Orthop Res. 1988;6(6):777–92.

    Article  CAS  PubMed  Google Scholar 

  98. Grande DA, et al. Evaluation of matrix scaffolds for tissue engineering of articular cartilage grafts. J Biomed Mater Res. 1997;34(2):211–20.

    Article  CAS  PubMed  Google Scholar 

  99. Spain TL, Agrawal CM, Athanasiou KA. New technique to extend the useful life of a biodegradable cartilage implant. Tissue Eng. 1998;4(4):343–52.

    Article  CAS  PubMed  Google Scholar 

  100. Lim EH, Sardinha JP, Myers S. Nanotechnology biomimetic cartilage regenerative scaffolds. Arch Plast Surg. 2014;41(3):231–40.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Webber MJ, et al. A perspective on the clinical translation of scaffolds for tissue engineering biomimetic collagenous scaffold to tune inflammation by targeting macrophages. Ann Biomed Eng. 2015;43(3):641–56.

    Article  PubMed  Google Scholar 

  102. Smeriglio P, et al. 3D hydrogel scaffolds for articular chondrocyte culture and cartilage generation. J Vis Exp. 2015;(104). https://doi.org/10.3791/53085.

  103. Ren K, et al. In-situ forming glycopolypeptide hydrogels as biomimetic scaffolds for cartilage tissue engineering. J Control Release. 2015;213:e64–5.

    Article  PubMed  Google Scholar 

  104. Gegg C, Yang F. Spatially patterned microribbon-based hydrogels induce zonally-organized cartilage regeneration by stem cells in 3D. Acta Biomater. 2019. pii: S1742-7061(19)30704-4. https://doi.org/10.1016/j.actbio.2019.10.025. [Epub ahead of print].

  105. De Moor L, Beyls E, Declercq H. Scaffold free microtissue formation for enhanced cartilage repair. Ann Biomed Eng. 2019. https://doi.org/10.1007/s10439-019-02348-4. [Epub ahead of print].

  106. Kon E, Filardo G, Brittberg M, Busacca M, Condello V, et al. A multilayer biomaterial for osteochondral regeneration shows superiority vs microfractures for the treatment of osteochondral lesions in a multicentre randomized trial at 2 years. Knee Surg Sports Traumatol Arthrosc. 2018;26(9):2704–15.

    Google Scholar 

  107. O'Brien CM, et al. Three-dimensional printing of nanomaterial scaffolds for complex tissue regeneration. Tissue Eng Part B Rev. 2015;21(1):103–14.

    Article  CAS  PubMed  Google Scholar 

  108. Jeznach O, Kołbuk D, Sajkiewicz P. Injectable hydrogels and nanocomposite hydrogels for cartilage regeneration. J Biomed Mater Res A. 2018; https://doi.org/10.1002/jbm.a.36449. [Epub ahead of print].

  109. Manoukian OS, Dieck C, Milne T, et al. Nanomaterials/Nanoco mposites for osteochondral tissue. Adv Exp Med Biol. 2018;1058:79–95.

    Article  CAS  PubMed  Google Scholar 

  110. Schipani R, Nolan DR, Lally C, Kelly DJ. Integrating finite element modelling and 3D printing to engineer biomimetic polymeric scaffolds for tissue engineering. Connect Tissue Res. 2019:1–16. https://doi.org/10.1080/03008207.2019.1656720. [Epub ahead of print].

  111. Wang J, Wang Y, Sun X, Liu D, Huang C, et al. Biomimetic cartilage scaffold with orientated porous structure of two factors for cartilage repair of knee osteoarthritis. Artif Cells Nanomed Biotechnol. 2019;47(1):1710–21.

    Google Scholar 

  112. Camarero-Espinosa S, Cooper-White JJ. Combinatorial presentation of cartilage-inspired peptides on nanopatterned surfaces enables directed differentiation of human mesenchymal stem cells towards distinct articular chondrogenic phenotypes. Biomaterials. 2019;210:105–15.

    Google Scholar 

  113. Owida HA, Yang R, Cen L, Kuiper NJ, Yang Y. Induction of zonal-specific cellular morphology and matrix synthesis for biomimetic cartilage regeneration using hybrid scaffolds. J R Soc Interface. 2018;15(143). pii: 20180310. https://doi.org/10.1098/rsif.2018.0310.

  114. Pereira DR, Reis RL, Oliveira JM. Layered scaffolds for osteochondral tissue engineering. Adv Exp Med Biol. 2018;1058:193–218.

    Article  CAS  PubMed  Google Scholar 

  115. Spencer V, Illescas E, Maltes L, et al. Osteochondral tissue engineering: translational research and turning research into products. Adv Exp Med Biol. 2018;1058:373–90.

    Article  CAS  PubMed  Google Scholar 

  116. Goldstein TA, Epstein CJ, Schwartz J, et al. Feasibility of bioprinting with a modified desktop 3D printer. Tissue Eng Part C Methods. 2016;22(12):1071–6.

    Article  CAS  PubMed  Google Scholar 

  117. Daly AC, Freeman FE, Gonzalez-Fernandez T, et al. 3D bioprinting for cartilage and osteochondral tissue engineering. Adv Healthc Mater. 2017;6(22). https://doi.org/10.1002/adhm.201700298. Epub 2017.

  118. Kankala RK, Lu FJ, Liu CG, et al. Effect of Icariin on engineered 3D-printed porous scaffolds for cartilage repair. Materials (Basel). 2018;11(8):E1390. https://doi.org/10.3390/ma11081390.

    Article  CAS  Google Scholar 

  119. Guo T, Ringel JP, Lim CG, et al. Three dimensional extrusion printing induces polymer molecule alignment and cell organization within engineered cartilage. J Biomed Mater Res A. 2018;106(8):2190–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Guo T, Lembong J, Zhang LG, Fisher JP. Three-dimensional printing articular cartilage: recapitulating the complexity of native tissue<sup/>. Tissue Eng Part B Rev. 2017;23(3):225–36.

    Article  PubMed  Google Scholar 

  121. Iulian A, Dan L, Camelia T, et al. Synthetic materials for osteochondral tissue engineering. Adv Exp Med Biol. 2018;1058:31–52.

    Article  CAS  PubMed  Google Scholar 

  122. Tibbits S. 4D printing: multi - material shape change. Archit Des. 2014;84:116–21.

    Google Scholar 

  123. Brittberg M. Autologous chondrocyte implantation--technique and long-term follow-up. Injury. 2008;39(Suppl 1):S40–9.

    Article  PubMed  Google Scholar 

  124. Gobbi A, et al. Patellofemoral full-thickness chondral defects treated with Hyalograft-C: a clinical, arthroscopic, and histologic review. Am J Sports Med. 2006;34(11):1763–73.

    Google Scholar 

  125. Waldman SD, et al. Long-term intermittent shear deformation improves the quality of cartilaginous tissue formed in vitro. J Orthop Res. 2003;21(4):590–6.

    Article  CAS  PubMed  Google Scholar 

  126. Crawford DC, et al. An autologous cartilage tissue implant NeoCart for treatment of grade III chondral injury to the distal femur: prospective clinical safety trial at 2 years. Am J Sports Med. 2009;37(7):1334–43.

    Article  PubMed  Google Scholar 

  127. Almqvist KF, et al. Treatment of cartilage defects in the knee using alginate beads containing human mature allogenic chondrocytes. Am J Sports Med. 2009;37(10):1920–9.

    Article  PubMed  Google Scholar 

  128. Dhollander AA, et al. Midterm results of the treatment of cartilage defects in the knee using alginate beads containing human mature allogenic chondrocytes. Am J Sports Med. 2012;40(1):75–82.

    Article  PubMed  Google Scholar 

  129. Almqvist KF, et al. Biological freezing of human articular chondrocytes. Osteoarthritis Cartilage. 2001;9(4):341–50.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel A. Grande PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Starecki, M., Gott, M.A., Schwartz, J.A., Sgaglione, N.A., Grande, D.A. (2020). Relevance of Engineered Scaffolds for Cartilage Repair. In: Gahunia, H., Gross, A., Pritzker, K., Babyn, P., Murnaghan, L. (eds) Articular Cartilage of the Knee. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7587-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7587-7_17

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-7585-3

  • Online ISBN: 978-1-4939-7587-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics