Skip to main content

Differential Proteomics Based on 2D-Difference In-Gel Electrophoresis and Tandem Mass Spectrometry for the Elucidation of Biological Processes in Antibiotic-Producer Bacterial Strains

  • Protocol
  • First Online:
Metabolic Network Reconstruction and Modeling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1716))

Abstract

Proteomics based on 2D-Difference In Gel Electrophoresis (2D-DIGE) coupled with mass spectrometry (MS) procedures can be considered a “gold standard” to determine quantitatively and comparatively protein abundances in cell extracts from different biological sources/conditions according to a gel-based approach. In particular, 2D-DIGE is used for protein specie separation, detection, and relative quantification, whenever tandem MS is used to obtain peptide sequence information that is managed according to bioinformatic procedures to identify the differentially represented protein species. The proteomic results consist of a dynamic portray of over- and down-represented protein species that, with the integration of gene ontology resources, allow obtaining a comprehensive understanding of the complex network of molecular signaling, regulatory circuits, and biochemical reactions occurring in cellular contexts. For this reason, proteomics has been widely used for studying molecular physiology of Gram-positive bacterial strains producing bioactive metabolites and belonging to actinomycete family. This highlighted the complex relationships linking overall regulatory processes and metabolic pathways to the biosynthesis of interesting bioactive molecules. In this chapter, we provide a detailed description of the procedures adopted to perform a differential proteomic analysis of the actinomycete Microbispora ATCC-PTA-5024, producing the promising NAI-107 lantibiotic. Although each experimental proteomic procedure has to be optimized to face the specific molecular characteristics of the organism under investigation, the protocols here described have also been used with minor modifications for proteomic studies on other bacterial strains, including the actinomycetes Streptomyces coelicolor, S. ambofaciens, Amycolatopsis balhimycina, and the Gram-negative proteobacteria Klebsiella oxytoca and Pseudoalteromonas haloplanktis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Coombs KM (2011) Quantitative proteomics of complex mixtures. Expert Rev Proteomics 8(5):659–677

    Article  CAS  PubMed  Google Scholar 

  2. Wu WW, Wang G, Baek SJ, Shen RF (2006) Comparative study of three proteomic quantitative methods, DIGE, cICAT, and iTRAQ, using 2D gel- or LC-MALDI TOF/TOF. J Proteome Res 5(3):651–658

    Article  CAS  PubMed  Google Scholar 

  3. Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68(5):850–858

    Article  CAS  PubMed  Google Scholar 

  4. Lopez MF, Berggren K, Chernokalskaya E et al (2000) A comparison of silver stain and SYPRO ruby protein gel stain with respect to protein detection in two-dimensional gels and identification by peptide mass profiling. Electrophoresis 21(17):3673–3683

    Article  CAS  PubMed  Google Scholar 

  5. Shevchenko A, Jensen ON, Podtelejnikov AV et al (1996) Linking genome and proteome by mass spectrometry: large-scale identification of yeast proteins from two dimensional gels. Proc Natl Acad Sci U S A 93(25):14440–14445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shevchenko A, Tomas H, Havlis J et al (2006) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1(6):2856–2860

    Article  CAS  PubMed  Google Scholar 

  7. Gallo G, Renzone G, Palazzotto E et al (2016) Elucidating the molecular physiology of lantibiotic NAI-107 production in Microbispora ATCC-PTA-5024. BMC Genomics 17:42

    Article  PubMed  PubMed Central  Google Scholar 

  8. Licona-Cassani C, Lim S, Marcellin E, Nielsen LK (2014) Temporal dynamics of the Saccharopolyspora erythraea phosphoproteome. Mol Cell Proteomics 13(5):1219–1230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yang Q, Ding X, Liu X et al (2014) Differential proteomic profiling reveals regulatory proteins and novel links between primary metabolism and spinosad production in Saccharopolyspora spinosa. Microb Cell Fact 13(1):27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ye C, Ng IS, Jing K, Lu Y (2014) Direct proteomic mapping of Streptomyces roseosporus NRRL 11379 with precursor and insights into daptomycin biosynthesis. J Biosci Bioeng 117(5):591–597

    Article  CAS  PubMed  Google Scholar 

  11. Chaudhary AK, Dhakal D, Sohng JK (2013) An insight into the “-omics” based engineering of streptomycetes for secondary metabolite overproduction. Biomed Res Int 2013:968518

    Article  PubMed  PubMed Central  Google Scholar 

  12. Yin P, Li YY, Zhou J (2013) Direct proteomic mapping of Streptomyces avermitilis wild and industrial strain and insights into avermectin production. J Proteomics 79:1–12

    Article  CAS  PubMed  Google Scholar 

  13. Song E, Malla S, Yang YH (2011) Proteomic approach to enhance doxorubicin production in panK-integrated Streptomyces peucetius ATCC 27952. J Ind Microbiol Biotechnol 38(9):1245–1253

    Article  CAS  PubMed  Google Scholar 

  14. Gallo G, Alduina R, Renzone G et al (2010) Differential proteomic analysis highlights metabolic strategies associated with balhimycin production in Amycolatopsis balhimycina chemostat cultivations. Microb Cell Fact 9:95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gallo G, Renzone G, Alduina R et al (2010) Differential proteomic analysis reveals novel links between primary metabolism and antibiotic production in Amycolatopsis balhimycina. Proteomics 10(7):1336–1358

    Article  CAS  PubMed  Google Scholar 

  16. Monciardini P, Iorio M, Maffioli S et al (2014) Discovering new bioactive molecules from microbial sources. Microb Biotechnol 7(3):209–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Donadio S, Maffioli S, Monciardini P et al (2010) Sources of novel antibiotics–aside the common roads. Appl Microbiol Biotechnol 88(6):1261–1267

    Article  CAS  PubMed  Google Scholar 

  18. Bibb MJ (2005) Regulation of secondary metabolism in streptomycetes. Curr Opin Microbiol 8(2):208–215

    Article  CAS  PubMed  Google Scholar 

  19. van Wezel GP, McDowall KJ (2011) The regulation of the secondary metabolism of Streptomyces: new links and experimental advances. Nat Prod Rep 28(7):1311–1333

    Article  PubMed  Google Scholar 

  20. Palazzotto E, Gallo G, Renzone G (2016) TrpM, a small protein modulating tryptophan biosynthesis and morpho-physiological differentiation in Streptomyces coelicolor A3(2). PLoS One 11(9):e0163422

    Article  PubMed  PubMed Central  Google Scholar 

  21. Palazzotto E, Renzone G, Fontana P et al (2015) Tryptophan promotes morphological and physiological differentiation in Streptomyces coelicolor. Appl Microbiol Biotechnol 99(23):10177–10189

    Article  CAS  PubMed  Google Scholar 

  22. Gallo G, Lo Piccolo L, Renzone G et al (2012) Differential proteomic analysis of an engineered Streptomyces coelicolor strain reveals metabolic pathways supporting growth on n-hexadecane. Appl Microbiol Biotechnol 94(5):1289–1301

    Article  CAS  PubMed  Google Scholar 

  23. Alduina R, Giardina A, Gallo G et al (2005) Expression in Streptomyces lividans of Nonomuraea genes cloned in an artificial chromosome. Appl Microbiol Biotechnol 68(5):656–662

    Article  CAS  PubMed  Google Scholar 

  24. Gallo G, Baldi F, Renzone G et al (2012) Adaptative biochemical pathways and regulatory networks in Klebsiella oxytoca BAS-10 producing a biotechnologically relevant exopolysaccharide during Fe(III)-citrate fermentation. Microb Cell Fact 11:152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Gallo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gallo, G., Scaloni, A. (2018). Differential Proteomics Based on 2D-Difference In-Gel Electrophoresis and Tandem Mass Spectrometry for the Elucidation of Biological Processes in Antibiotic-Producer Bacterial Strains. In: Fondi, M. (eds) Metabolic Network Reconstruction and Modeling. Methods in Molecular Biology, vol 1716. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7528-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7528-0_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7527-3

  • Online ISBN: 978-1-4939-7528-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics