Skip to main content

Polyamine Metabolism in Climacteric and Non-Climacteric Fruit Ripening

  • Protocol
  • First Online:
Polyamines

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1694))

Abstract

Polyamines are small aliphatic amines that are found in both prokaryotic and eukaryotic organisms. These growth regulators have been implicated in abiotic and biotic stresses as well as plant development and morphogenesis. Several studies have also suggested a key role of polyamines during fruit set and early development. Polyamines have also been linked to fruit ripening and in the regulation of fruit quality-related traits.

Recent studies indicate that during ripening of both climacteric and non-climacteric fruits, a decline in total polyamine contents is observed together with an increased catabolism of these growth regulators.

In this review, we explore the current knowledge on polyamine biosynthesis and catabolism during fruit set and ripening. The study of the role of polyamine metabolism in fruit ripening indicates the possible application of these natural polycations to control ripening and postharvest decay as well as to improve fruit quality traits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Giovannoni JJ (2004) Genetic regulation of fruit development and ripening. Plant Cell 16:S170–S180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cherian S, Figueroa CR, Nair H (2014) ‘Movers and shakers’ in the regulation of fruit ripening: a cross-dissection of climacteric versus non-climacteric fruit. J Exp Bot 65(17):4705–4722

    Article  CAS  PubMed  Google Scholar 

  3. Liu M, Pirrello J, Chervin C, Roustan J-P, Bouzayen M (2015) Ethylene control of fruit ripening: revisiting the complex network of transcriptional regulation. Plant Physiol 169(4):2380–2390

    PubMed  PubMed Central  CAS  Google Scholar 

  4. Fortes AM, Teixeira RT, Agudelo-Romero P (2015) Complex interplay of hormonal signals during grape berry ripening. Molecules 20(5):9326–9343

    Article  CAS  PubMed  Google Scholar 

  5. Agudelo-Romero P, Bortolloti C, Pais MS, Tiburcio AF, Fortes AM (2013) Study of polyamines during grape ripening indicate an important role of polyamine catabolism. Plant Physiol Biochem 67:105–119

    Article  CAS  PubMed  Google Scholar 

  6. Mattoo AK, Chung SH, Goyal RK et al (2007) Overaccumulation of higher polyamines in ripening transgenic tomato fruit revives metabolic memory, upregulates anabolism-related genes, and positively impacts nutritional quality. J AOAC Int 90(5):1456–1464

    PubMed  CAS  Google Scholar 

  7. Srivastava A, Sang HC, Fatima T, Datsenka T, Handa AK, Mattoo AK (2007) Polyamines as anabolic growth regulators revealed by transcriptome analysis and metabolite profiles of tomato fruits engineered to accumulate spermidine and spermine. Plant Biotechnol 24(1):57–70

    Article  CAS  Google Scholar 

  8. Handa AK, Mattoo AK (2010) Differential and functional interactions emphasize the multiple roles of polyamines in plants. Plant Physiol Biochem 48(7):540–546

    Article  CAS  Google Scholar 

  9. Kausch KD et al (2012) Methyl jasmonate deficiency alters cellular metabolome, including the aminome of tomato (Solanum lycopersicum L.) fruit. Amino Acids 42(2–3):843–856

    Article  CAS  PubMed  Google Scholar 

  10. Nambeesan S, Datsenka T, Ferruzzi MG, Malladi A, Mattoo AK, Handa AK (2010) Overexpression of yeast spermidine synthase impacts ripening, senescence and decay symptoms in tomato. Plant J 63(5):836–847

    Article  CAS  PubMed  Google Scholar 

  11. Bregoli AM et al (2002) Peach (Prunus persica) fruit ripening: aminoethoxyvinylglycine (AVG) and exogenous polyamines affect ethylene emission and flesh firmness. Physiol Plant 114(3):472–481

    Article  CAS  PubMed  Google Scholar 

  12. Ziosi V, Scaramagli S, Bregoli AM, Biondi S, Torrigiani P (2003) Peach (Prunus persica L.) fruit growth and ripening: transcript levels and activity of polyamine biosynthetic enzymes in the mesocarp. J Plant Physiol 160(9):1109–1115

    Article  CAS  PubMed  Google Scholar 

  13. Agudelo-Romero P et al (2014) Perturbation of polyamine catabolism affects grape ripening of Vitis vinifera cv. Trincadeira. Plant Physiol Biochem 74:141–155

    Article  CAS  PubMed  Google Scholar 

  14. Cona A, Rea G, Angelini R, Federico R, Tavladoraki P (2006) Functions of amine oxidases in plant development and defence. Trends Plant Sci 11(2):80–88

    Article  CAS  PubMed  Google Scholar 

  15. Alcázar R et al (2010) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231:1237–1124

    Article  CAS  Google Scholar 

  16. Minocha R, Majumdar R, Minocha SC (2014) Polyamines and abiotic stress in plants: a complex relationship. Front Plant Sci 5:175

    Article  PubMed  PubMed Central  Google Scholar 

  17. Agudelo-Romero P et al (2015) Transcriptome and metabolome reprogramming in Vitis vinifera cv. Trincadeira berries upon infection with Botrytis cinerea. J Exp Bot 66(7):1769–1785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu J-H, Wang W, Wu H, Gong X, Moriguchi T (2015) Polyamines function in stress tolerance: from synthesis to regulation. Front Plant Sci 6:827

    PubMed  PubMed Central  Google Scholar 

  19. Pál M, Szalai G, Janda T (2015) Speculation: polyamines are important in abiotic stress signaling. Plant Sci 237:16–23

    Article  CAS  PubMed  Google Scholar 

  20. Applewhite PB, Kaur-Sawhney R, Galston AW (2000) A role for spermidine in the bolting and flowering of Arabidopsis. Physiol Plant 108(3):314–320

    Article  CAS  Google Scholar 

  21. Tiburcio AF, Altabella T, Bitrián M, Alcázar R (2014) The roles of polyamines during the lifespan of plants: from development to stress. Planta 240(1):1–18

    Article  CAS  Google Scholar 

  22. Jancewicz AL, Gibbs NM, Masson PH (2016) Cadaverine’s functional role in plant development and environmental response. Front Plant Sci 7:1–8

    Article  Google Scholar 

  23. Fortes AM et al (2011) Arginine decarboxylase expression, polyamines biosynthesis and reactive oxygen species during organogenic nodule formation in hop. Plant Signal Behav 6(2):258–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pandey S, Ranade SA, Nagar PK, Kumar N (2000) Role of polyamines and ethylene as modulators of plant senescence. J Biosci 25:291–299

    Article  CAS  PubMed  Google Scholar 

  25. Sobieszczuk-Nowicka E (2016) Polyamine catabolism adds fuel to leaf senescence. Amino Acids 49:49–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fortes AM, Agudelo-Romero P, Silva MS et al (2011) Transcript and metabolite analysis in Trincadeira cultivar reveals novel information regarding the dynamics of grape ripening. BMC Plant Biol 11:1–34

    Article  CAS  Google Scholar 

  27. Tavladoraki P, Cona A, Angelini R (2016) Copper-containing amine oxidases and FAD-dependent polyamine oxidases are key players in plant tissue differentiation and organ development. Front Plant Sci 7:824

    Article  PubMed  PubMed Central  Google Scholar 

  28. Tsaniklidis G, Kotsiras A, Tsafouros A et al (2016) Spatial and temporal distribution of genes involved in polyamine metabolism during tomato fruit development. Plant Physiol Biochem 100:27–36

    Article  CAS  PubMed  Google Scholar 

  29. Valero D, Martinez-Romero D, Serrano M, Riquelme F (1998) Influence of postharvest treatment with putrescine and calcium on endogenous polyamines, firmness, and abscisic acid in lemon (Citrus lemon L. Burm cv. Verna). J Agric Food Chem 46:2102–2109

    Article  CAS  Google Scholar 

  30. Mirdehghan SH, Rahimi S (2016) Pre-harvest application of polyamines enhances antioxidants and table grape (Vitis vinifera L.) quality during postharvest period. Food Chem 196:1040–1047

    Article  CAS  PubMed  Google Scholar 

  31. Khosroshahi MRZ, Esna-Ashari M, Ershadi A (2007) Effect of exogenous putrescine on post-harvest life of strawberry (Fragaria ananassa Duch.) fruit, cultivar Selva. Sci Hortic 114:27–32

    Article  CAS  Google Scholar 

  32. Sotelo-Silveira M, Marsch-Martínez N, de Folter S (2014) Unraveling the signal scenario of fruit set. Planta 239:1147–1158

    Article  CAS  PubMed  Google Scholar 

  33. Palavan N, Galston AW (1982) Polyamine biosynthesis and titer during various developmental stages of Phaseolus vulgaris. Physiol Plant 55:438–444

    Article  CAS  Google Scholar 

  34. Carbonell J, Navarro JL (1989) Correlation of spermine levels with ovary senescence and with fruit set and development in Pisum sativum L. Planta 178:482–487

    Article  CAS  PubMed  Google Scholar 

  35. Alabadí D, Agüero MS, Pérez-Amador MA, Carbonell J (1996) Arginase, arginine decarboxylase, ornithine decarboxylase, and polyamines in tomato ovaries’ changes in unpollinated ovaries and parthenocarpic fruits lnduced by auxin or gibberellin. Plant Physiol 112:1237–1244

    Article  PubMed  PubMed Central  Google Scholar 

  36. Slocum RD, Galston AW (1985) Changes in polyamine biosynthesis associated with postfertilization growth and development in tobacco ovary tissues. Plant Physiol 79:336–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Biasi R, Bagni N, Costa G (1988) Endogenous polyamines in apple and their relationship to fruitset and fruit growth. Plant Physiol 73:201–205

    Article  CAS  Google Scholar 

  38. Kushad MM, Yelenosky G, Knight R (1988) Interrelationship of polyamine and ethylene biosynthesis during avocado fruit development and ripening. Plant Physiol 87:463–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shiozaki S, Ogata T, Horiuchi S (2000) Endogenous polyamines in the pericarp and seed of the grape berry during development and ripening. Sci Hortic 83:33–41

    Article  CAS  Google Scholar 

  40. Malik AU, Singh Z (2004) Endogenous free polyamines of mangos in relation to development and ripening. J Am Soc Hort Sci 129:280–286

    Google Scholar 

  41. Teh HF, Neoh BK, Wong YC et al (2014) Hormones, polyamines, and cell wall metabolism during oil palm fruit mesocarp development and ripening. J Agric Food Chem 62:8143–8152

    Article  CAS  PubMed  Google Scholar 

  42. Gomez-Jimenez MC, Paredes MA, Gallardo M et al (2010) Tissue-specific expression of olive S-adenosyl methionine decarboxylase and spermidine synthase genes and polyamine metabolism during flower opening and early fruit development. Planta 232:629–647

    Article  CAS  PubMed  Google Scholar 

  43. Tassoni A, Germanà MA, Bagni N (2004) Free and conjugated polyamine content in Citrus sinensis Osbeck, cultivar Brasiliano N.L. 92, a Navel orange, at different maturation stages. Food Chem 87:537–541

    Article  CAS  Google Scholar 

  44. Kushad MM (1998) Changes in polyamine levels in relationship to the double-sigmoidal growth curve of peaches. J Am Soc Hortic Sci 123:950–955

    CAS  Google Scholar 

  45. Torrigiani P, Bressanin D, Beatriz Ruiz K et al (2012) Spermidine application to young developing peach fruits leads to a slowing down of ripening by impairing ripening-related ethylene and auxin metabolism and signaling. Physiol Plant 146:86–98

    Article  CAS  PubMed  Google Scholar 

  46. Ziosi V, Bregoli AM, Bonghi C et al (2006) Transcription of ethylene perception and biosynthesis genes is altered by putrescine, spermidine and aminoethoxyvinylglycine (AVG) during ripening in peach fruit (Prunus persica). New Phytol 172:229–238

    Article  CAS  PubMed  Google Scholar 

  47. Liu J, Nada K, Pang X et al (2006) Role of polyamines in peach fruit development and storage. Tree Physiol 26:791–798

    Article  CAS  PubMed  Google Scholar 

  48. Serrano M, Martinez-Madrid MC, Riquelme F, Romojaro F (1995) Endogenous levels of polyamines and abscisic acid in pepper fruits during growth and ripening. Physiol Plant 95:73–76

    Article  CAS  Google Scholar 

  49. Rastogi R, Davies PJ (1991) Polyamine metabolism in ripening tomato fruit. II. Polyamine metabolism and synthesis in relation to enhanced putrescine content and storage life of alc tomato fruit. Plant Physiol 95:41–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Smith TA (1985) Polyamines. Annu Rev Physiol 35:117–143

    Article  Google Scholar 

  51. Perez-Amador MA, Leon J, Green PJ, Carbonell J (2002) Induction of the arginine decarboxylase ADC2 gene provides evidence for the involvement of polyamines in the wound response in Arabidopsis. Plant Physiol 130:1454–1463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Urano K, Yoshiba Y, Nanjo T et al (2003) Characterization of Arabidopsis genes involved in biosynthesis of polyamines in abiotic stress responses and developmental stages. Plant Cell Environ 26:1917–1926

    Article  CAS  Google Scholar 

  53. Urano K, Yoshiba Y, Nanjo T et al (2004) Arabidopsis stress-inducible gene for arginine decarboxylase AtADC2 is required for accumulation of putrescine in salt tolerance. Biochem Biophys Res Commun 313:369–375

    Article  CAS  PubMed  Google Scholar 

  54. Acosta C, Pérez-Amador MA, Carbonell J, Granell A (2005) The two ways to produce putrescine in tomato are cell-specific during normal development. Plant Sci 168:1053–1057

    Article  CAS  Google Scholar 

  55. Ioannidis NE, Kotzabasis K (2014) Polyamines in chemiosmosis in vivo: a cunning mechanism for the regulation of ATP synthesis during growth and stress. Front Plant Sci 5:71

    Article  PubMed  PubMed Central  Google Scholar 

  56. Paschalidis KA, Roubelakis-Angelakis KA (2005) Sites and regulation of polyamine catabolism in the tobacco plant. Correlations with cell division/expansion, cell cycle progression, and vascular development. Plant Physiol 138:2174–2184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bauza T, Kelly MT, Blaise A (2007) Study of polyamines and their precursor amino acids in Grenache noir and Syrah grapes and wine of the Rhone Valley. Food Chem 105:405–413

    Article  CAS  Google Scholar 

  58. Rastogi R, Dulson J, Rothstein SJ (1993) Cloning of tomato (Lycopersicon esculenfum Mill.) arginine decarboxylase gene and its expression during fruit ripening. Plant Physiol 103:829–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Deluc LG, Grimplet J, Wheatley MD et al (2007) Transcriptomic and metabolite analyses of Cabernet Sauvignon grape berry development. BMC Genomics 8:429

    Article  PubMed  PubMed Central  Google Scholar 

  60. Pilati S, Perazzolli M, Malossini A et al (2007) Genome-wide transcriptional analysis of grapevine berry ripening reveals a set of genes similarly modulated during three seasons and the occurrence of an oxidative burst at vèraison. BMC Genomics 8:428

    Article  PubMed  PubMed Central  Google Scholar 

  61. Tassoni A, Watkins CB, Davies PJ (2006) Inhibition of the ethylene response by 1-MCP in tomato suggests that polyamines are not involved in delaying ripening, but may moderate the rate of ripening or over-ripening. J Exp Bot 57:3313–3325

    Article  CAS  PubMed  Google Scholar 

  62. Mattoo AK, Sobolev AP, Neelam A et al (2006) Nuclear magnetic resonance spectroscopy-based metabolite profiling of transgenic tomato fruit engineered to accumulate spermidine and spermine reveals enhanced anabolic and nitrogen-carbon interactions. Plant Physiol 142:1759–1770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ali K, Maltese F, Fortes AM et al (2011) Monitoring biochemical changes during grape berry development in Portuguese cultivars by NMR spectroscopy. Food Chem 124:1760–1769

    Article  CAS  Google Scholar 

  64. Neelam A, Cassol T, Mehta RA et al (2008) A field-grown transgenic tomato line expressing higher levels of polyamines reveals legume cover crop mulch-specific perturbations in fruit phenotype at the levels of metabolite profiles, gene expression, and agronomic characteristics. J Exp Bot 59:2337–2346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Moschou PN, Wu J, Cona A et al (2012) The polyamines and their catabolic products are significant players in the turnover of nitrogenous molecules in plants. J Exp Bot 63:5003–5015

    Article  CAS  Google Scholar 

  66. Serrano M, Romojaro F, Casas JL, Acosta M (1991) Ethylene and polyamine metabolism in climacteric and nonclimacteric carnation flowers. Hortscience 26:894–896

    CAS  Google Scholar 

  67. Parra-Lobato MC, Gomez-Jimenez MC (2011) Polyamine-induced modulation of genes involved in ethylene biosynthesis and signalling pathways and nitric oxide production during olive mature fruit abscission. J Exp Bot 62:4447–4465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ziosi V, Bregoli AM, Fregola F et al (2009) Jasmonate-induced ripening delay is associated with up-regulation of polyamine levels in peach fruit. J Plant Physiol 166:938–946

    Article  CAS  PubMed  Google Scholar 

  69. Delis C, Dimou M, Flemetakis E et al (2006) A root- and hypocotyl-specific gene coding for copper-containing amine oxidase is related to cell expansion in soybean seedlings. J Exp Bot 57:101–111

    Article  CAS  PubMed  Google Scholar 

  70. Mateos RM, Jiménez A, Román P et al (2013) Antioxidant systems from pepper (Capsicum annuum L.): involvement in the response to temperature changes in ripe fruits. Int J Mol Sci 14:9556–9580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Rea G, Metoui O, Infantino A et al (2002) Copper amine oxidase expression in defense responses to wounding and Ascochyta rabiei invasion. Plant Physiol 128:865–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Angelini R, Tisi A, Rea G et al (2008) Involvement of polyamine oxidase in wound healing. Plant Physiol 146:162–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Heng W, Wang Z, Jiang X et al (2016) The role of polyamines during exocarp formation in a russet mutant of “Dangshansuli” pear (Pyrus bretschneideri Rehd.) Plant Cell Rep 35:1841–1852

    Article  CAS  PubMed  Google Scholar 

  74. Angelini R, Cona A, Federico R et al (2010) Plant amine oxidases “on the move”: an update. Plant Physiol Biochem 48:560–564

    Article  CAS  Google Scholar 

  75. Hu J, Baker A, Bartel B et al (2012) Plant peroxisomes: biogenesis and function. Plant Cell 24:2279–2303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Cuevas JC, López-Cobollo R, Alcázar R et al (2008) Putrescine is involved in Arabidopsis freezing tolerance and cold acclimation by regulating abscisic acid levels in response to low temperature. Plant Physiol 148:1094–1105

    Article  PubMed  PubMed Central  Google Scholar 

  77. Urano K, Maruyama K, Ogata Y et al (2009) Characterization of the ABA-regulated global responses to dehydration in Arabidopsis by metabolomics. Plant J 57:1065–1078

    Article  CAS  PubMed  Google Scholar 

  78. Toumi I, Moschou PN, Paschalidis KA et al (2010) Abscisic acid signals reorientation of polyamine metabolism to orchestrate stress responses via the polyamine exodus pathway in grapevine. J Plant Physiol 167:519–525

    Article  CAS  PubMed  Google Scholar 

  79. Sun L, Zhang M, Ren J et al (2010) Reciprocity between abscisic acid and ethylene at the onset of berry ripening and after harvest. BMC Plant Biol 10:257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Davies C, Boss PK, Robinson SP (1997) Treatment of grape berries, a nonclimacteric fruit with a synthetic Auxin, retards ripening and alters the expression of developmentally regulated genes. Plant Physiol 115:1155–1161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhang M, Yuan B, Leng P (2009) The role of ABA in triggering ethylene biosynthesis and ripening of tomato fruit. J Exp Bot 60:1579–1588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Mou W, Li D, Bu J et al (2016) Comprehensive analysis of ABA effects on ethylene biosynthesis and signaling during tomato fruit ripening. PLoS One 11(4):e0154072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Van de Poel B, Bulens I, Oppermann Y et al (2013) S-adenosyl-l-methionine usage during climacteric ripening of tomato in relation to ethylene and polyamine biosynthesis and transmethylation capacity. Physiol Plant 148:176–188

    Article  CAS  PubMed  Google Scholar 

  84. Tavakoli K, Rahemi M (2014) Effect of polyamines, 2,4-D, isopropyl ester and naphthalene acetamide on improving fruit yield and quality of date (Phoenix dactylifera L.) Int J Hortic Sci Technol 1:163–169

    CAS  Google Scholar 

  85. Malik AU, Singh Z (2006) Improved fruit retention, yield and fruit quality in mango with exogenous application of polyamines. Sci Hortic 110:167–174

    Article  CAS  Google Scholar 

  86. Franco-Mora O, Tanabe K, Tamura F, Itai A (2005) Effects of putrescine application on fruit set in “Housui” Japanese pear (Pyrus pyrifolia Nakai). Sci Hortic 104:265–273

    Article  CAS  Google Scholar 

  87. Torrigiani P, Bregoli AM, Ziosi V et al (2004) Pre-harvest polyamine and aminoethoxyvinylglycine (AVG) applications modulate fruit ripening in Stark Red Gold nectarines (Prunus persica L. Batsch). Postharvest Biol Technol 33:293–308

    Article  CAS  Google Scholar 

  88. Saleem BA, Malik AU, Anwar R, Farooq M (2008) Exogenous application of polyamines improves fruit set, yield and quality of sweet oranges. Acta Hortic 774:187–194

    Article  CAS  Google Scholar 

  89. Jhalegar MJ, Sharma RR, Pal RK et al (2011) Analysis of physiological and biochemical changes in kiwifruit (Actinidia deliciosa cv. Allison) after the postharvest treatment with 1-methylcyclopropene. J Plant Biochem Biotechnol 20:205–210

    Article  CAS  Google Scholar 

  90. Kolotilin I, Koltai H, Bar-Or C et al (2011) Expressing yeast SAMdc gene confers broad changes in gene expression and alters fatty acid composition in tomato fruit. Physiol Plant 142:211–223

    Article  CAS  PubMed  Google Scholar 

  91. Mehta RA, Cassol T, Li N et al (2002) Engineered polyamine accumulation in tomato enhances phytonutrient content, juice quality, and vine life. Nat Biotechnol 20:613–618

    Article  CAS  PubMed  Google Scholar 

  92. Neily MH, Matsukura C, Maucourt M et al (2011) Enhanced polyamine accumulation alters carotenoid metabolism at the transcriptional level in tomato fruit over-expressing spermidine synthase. J Plant Physiol 168:242–252

    Article  CAS  PubMed  Google Scholar 

  93. Mattoo AK, Handa AK (2008) Higher polyamines restore and enhance metabolic memory in ripening fruit. Plant Sci 174:386–393

    Article  CAS  Google Scholar 

  94. Fortes A, Gallusci P (2017) Plant stress responses and phenotypic plasticity in the epigenomics era: perspectives on the grapevine scenario, a model for perennial crop plants. Front Plant Sci 8:82

    PubMed  PubMed Central  Google Scholar 

  95. Wang W, Liu J-H (2016) CsPAO4 of Citrus sinensis functions in polyamine terminal catabolism and inhibits plant growth under salt stress. Sci Rep 6:31384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Funding to A.M.F. was provided by the Portuguese Foundation for Science and Technology (SFRH/BPD/100928/2014, IFCT050, PEst-OE/BIA/UI4046/2014).

We would like to thank Dr. Caparrós-Martín JA for his invaluable help with Fig. 2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Margarida Fortes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Fortes, A.M., Agudelo-Romero, P. (2018). Polyamine Metabolism in Climacteric and Non-Climacteric Fruit Ripening. In: Alcázar, R., Tiburcio, A. (eds) Polyamines. Methods in Molecular Biology, vol 1694. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7398-9_36

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7398-9_36

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7397-2

  • Online ISBN: 978-1-4939-7398-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics