Skip to main content

Animal Models for Pseudomonas aeruginosa Quorum Sensing Studies

  • Protocol
  • First Online:
Quorum Sensing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1673))

Abstract

Quorum sensing (QS) systems play global regulatory roles in bacterial virulence. They synchronize the expression of multiple virulence factors and they control and modulate bacterial antibiotic tolerance systems and host defense mechanisms. Therefore, it is important to obtain knowledge about QS modes of action and to test putative therapeutics that may interrupt QS actions in the context of infections. This chapter describes methods to study bacterial pathogenesis in murine acute and persistent/relapsing infection models, using the Gram-negative bacterial pathogen Pseudomonas aeruginosa as an example. These infection models can be used to probe bacterial virulence functions and in mechanistic studies, as well as for the assessment of the therapeutic potential of antibacterials, including anti-virulence agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gellatly SL, Hancock RE (2013) Pseudomonas aeruginosa: new insights into pathogenesis and host defenses. Pathog Dis 67:159–173

    Article  CAS  PubMed  Google Scholar 

  2. Kerr KG, Snelling AM (2009) Pseudomonas aeruginosa: a formidable and ever-present adversary. J Hosp Infect 73:338–344

    Article  CAS  PubMed  Google Scholar 

  3. Lister PD, Wolter DJ, Hanson ND (2009) Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev 22:582–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Crouch Brewer S, Wunderink RG, Jones CB, Leeper KV Jr (1996) Ventilator-associated pneumonia due to Pseudomonas aeruginosa. Chest 109:1019–1029

    Article  CAS  PubMed  Google Scholar 

  5. Pier GB, Ramphal R (2004) Pseudomonas aeruginosa. In: Mandell GL, Bennet JE, Dolin R (eds) Principles and practise of infectious diseases, vol 6. Elsevier, Amsterdam, pp 2587–2615

    Google Scholar 

  6. Wibbenmeyer L, Danks R, Faucher L, Amelon M, Latenser B, Kealey GP et al (2006) Prospective analysis of nosocomial infection rates, antibiotic use, and patterns of resistance in a burn population. J Burn Care Res 27:152–160

    Article  PubMed  Google Scholar 

  7. Azzopardi EA, Azzopardi E, Camilleri L, Villapalos J, Boyce DE, Dziewulski P et al (2014) Gram negative wound infection in hospitalised adult burn patients–systematic review and metanalysis. PLoS One 9:e95042

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lipovy B, Rihova H, Hanslianova M, Gregorova N, Suchanek I, Brychta P (2010) Prevalence and resistance of Pseudomonas aeruginosa in severely burned patients: a 10-year retrospective study. Acta Chir Plast 52:39–43

    CAS  PubMed  Google Scholar 

  9. Church D, Elsayed S, Reid O, Winston B, Lindsay R (2006) Burn wound infections. Clin Microbiol Rev 19:403–434

    Article  PubMed  PubMed Central  Google Scholar 

  10. Venturi V (2006) Regulation of quorum sensing in Pseudomonas. FEMS Microbiol Rev 30:274–291

    Article  CAS  PubMed  Google Scholar 

  11. Deziel E, Gopalan S, Tampakaki AP, Lepine F, Padfield KE, Saucier M et al (2005) The contribution of MvfR to Pseudomonas aeruginosa pathogenesis and quorum sensing circuitry regulation: multiple quorum sensing-regulated genes are modulated without affecting lasRI, rhlRI or the production of N-acyl-L-homoserine lactones. Mol Microbiol 55:998–1014

    Article  CAS  PubMed  Google Scholar 

  12. Maura D, Hazan R, Kitao T, Ballok AE, Rahme LG (2016) Evidence for direct control of virulence and defense dene circuits by the Pseudomonas aeruginosa quorum sensing regulator, MvfR. Sci Rep 6:34083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gilbert KB, Kim TH, Gupta R, Greenberg EP, Schuster M (2009) Global position analysis of the Pseudomonas aeruginosa quorum-sensing transcription factor LasR. Mol Microbiol 73:1072–1085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Heeb S, Fletcher MP, Chhabra SR, Diggle SP, Williams P, Camara M (2011) Quinolones: from antibiotics to autoinducers. FEMS Microbiol Rev 35:247–274

    Article  CAS  PubMed  Google Scholar 

  15. Maura D, Ballok AE, Rahme LG (2016) Considerations and caveats in anti-virulence drug development. Curr Opin Microbiol 33:41–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wagner S, Sommer R, Hinsberger S, Lu C, Hartmann RW, Empting M et al (2016) Novel strategies for the treatment of Pseudomonas aeruginosa Infections. J Med Chem 59:5929–5969

    Article  CAS  PubMed  Google Scholar 

  17. Papaioannou E, Utari PD, Quax WJ (2013) Choosing an appropriate infection model to study quorum sensing inhibition in Pseudomonas infections. Int J Mol Sci 14:19309–19340

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kukavica-Ibrulj I, Levesque RC (2008) Animal models of chronic lung infection with Pseudomonas aeruginosa: useful tools for cystic fibrosis studies. Lab Anim 42:389–412

    Article  CAS  PubMed  Google Scholar 

  19. Stevens EJ, Ryan CM, Friedberg JS, Barnhill RL, Yarmush ML, Tompkins RG (1994) A quantitative model of invasive Pseudomonas infection in burn injury. J Burn Care Rehabil 15:232–235

    Article  CAS  PubMed  Google Scholar 

  20. Murray CK (2007) Infections in burns. J Trauma 62:S73

    Article  PubMed  Google Scholar 

  21. Pruitt BA Jr, McManus AT, Kim SH, Goodwin CW (1998) Burn wound infections: current status. World J Surg 22:135–145

    Article  PubMed  Google Scholar 

  22. Coban YK (2012) Infection control in severely burned patients. World J Crit Care Med 1:94–101

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cochran A, Morris SE, Edelman LS, Saffle JR (2002) Systemic Candida infection in burn patients: a case-control study of management patterns and outcomes. Surg Infect (Larchmt) 3:367–374

    Article  Google Scholar 

  24. Lesic B, Lepine F, Deziel E, Zhang J, Zhang Q, Padfield K et al (2007) Inhibitors of pathogen intercellular signals as selective anti-infective compounds. PLoS Pathog 3:1229–1239

    Article  CAS  PubMed  Google Scholar 

  25. Starkey M, Lepine F, Maura D, Bandyopadhaya A, Lesic B, He J et al (2014) Identification of anti-virulence compounds that disrupt quorum-sensing regulated acute and persistent pathogenicity. PLoS Pathog 10:e1004321

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bandyopadhaya A, Tsurumi A, Maura D, Jeffrey KL, Rahme LG (2016) A quorum-sensing signal promotes host tolerance training through HDAC1-mediated epigenetic reprogramming. Nat Microbiol 1:16174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Que YA, Hazan R, Strobel B, Maura D, He J, Kesarwani M et al (2013) A quorum sensing small volatile molecule promotes antibiotic tolerance in bacteria. PLoS One 8:e80140

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kayama S, Murakami K, Ono T, Ushimaru M, Yamamoto A, Hirota K et al (2009) The role of rpoS gene and quorum-sensing system in ofloxacin tolerance in Pseudomonas aeruginosa. FEMS Microbiol Lett 298:184–192

    Article  CAS  PubMed  Google Scholar 

  29. Earley ZM, Akhtar S, Green SJ, Naqib A, Khan O, Cannon AR et al (2015) Burn injury alters the intestinal microbiome and increases gut permeability and bacterial translocation. PLoS One 10:e0129996

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tang HB, DiMango E, Bryan R, Gambello M, Iglewski BH, Goldberg JB et al (1996) Contribution of specific Pseudomonas aeruginosa virulence factors to pathogenesis of pneumonia in a neonatal mouse model of infection. Infect Immun 64:37–43

    CAS  PubMed  PubMed Central  Google Scholar 

  31. van Heeckeren AM, Schluchter MD, Xue W, Davis PB (2006) Response to acute lung infection with mucoid Pseudomonas aeruginosa in cystic fibrosis mice. Am J Respir Crit Care Med 173:288–296

    Article  PubMed  Google Scholar 

  32. Debarbieux L, Leduc D, Maura D, Morello E, Criscuolo A, Grossi O et al (2010) Bacteriophages can treat and prevent Pseudomonas aeruginosa lung infections. J Infect Dis 201:1096–1104

    Article  CAS  PubMed  Google Scholar 

  33. Dufour N, Clermont O, La Combe B, Messika J, Dion S, Khanna V et al (2016) Bacteriophage LM33_P1, a fast-acting weapon against the pandemic ST131-O25b:H4 Escherichia coli clonal complex. J Antimicrob Chemother 71:3072–3080

    Article  CAS  PubMed  Google Scholar 

  34. Harris G, Kuo Lee R, Lam CK, Kanzaki G, Patel GB et al (2013) A mouse model of Acinetobacter baumannii-associated pneumonia using a clinically isolated hypervirulent strain. Antimicrob Agents Chemother 57:3601–3613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gjodsbol K, Christensen JJ, Karlsmark T, Jorgensen B, Klein BM, Krogfelt KA (2006) Multiple bacterial species reside in chronic wounds: a longitudinal study. Int Wound J 3:225–231

    Article  PubMed  Google Scholar 

  36. Rhoads DD, Wolcott RD, Percival SL (2008) Biofilms in wounds: management strategies. J Wound Care 17:502–508

    Article  CAS  PubMed  Google Scholar 

  37. Bergamini TM, Lamont PM, Cheadle WG, Polk HC Jr (1984) Combined topical and systemic antibiotic prophylaxis in experimental wound infection. Am J Surg 147:753–756

    Article  CAS  PubMed  Google Scholar 

  38. McHugh SM, Collins CJ, Corrigan MA, Hill AD, Humphreys H (2011) The role of topical antibiotics used as prophylaxis in surgical site infection prevention. J Antimicrob Chemother 66:693–701

    Article  CAS  PubMed  Google Scholar 

  39. Bandyopadhaya A, Kesarwani M, Que YA, He J, Padfield K, Tompkins R et al (2012) The quorum sensing volatile molecule 2-amino acetophenon modulates host immune responses in a manner that promotes life with unwanted guests. PLoS Pathog 8:e1003024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurence G. Rahme Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Maura, D., Bandyopadhaya, A., Rahme, L.G. (2018). Animal Models for Pseudomonas aeruginosa Quorum Sensing Studies. In: Leoni, L., Rampioni, G. (eds) Quorum Sensing. Methods in Molecular Biology, vol 1673. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7309-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7309-5_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7308-8

  • Online ISBN: 978-1-4939-7309-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics