Skip to main content

Targeting c-di-GMP Signaling, Biofilm Formation, and Bacterial Motility with Small Molecules

  • Protocol
  • First Online:
Book cover c-di-GMP Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1657))

Abstract

Bacteria possess several signaling molecules that regulate distinct phenotypes. Cyclic di-GMP (c-di-GMP) has emerged as a ubiquitous second messenger that regulates bacterial virulence, cell cycle, motility, and biofilm formation. The link between c-di-GMP signaling and biofilm formation affords novel strategies for treatment of biofilm-associated infections, which is a major public health problem. The complex c-di-GMP signaling pathway creates a hurdle in the development of small molecule modulators. Nonetheless, some progress has been made in this regard and inhibitors of c-di-GMP metabolizing enzymes that affect biofilm formation and motility have been documented. Herein we discuss the components of c-di-GMP signaling, their correlation with biofilm formation as well as motility and reported small molecule inhibitors of c-di-GMP signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Römling U, Galperin MY, Gomelsky M (2013) Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev 77(1):1–52

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ross P, Weinhouse H, Aloni Y, Michaeli D, Weinbergerohana P, Mayer R, Braun S, Devroom E, Vandermarel GA, Vanboom JH, Benziman M (1987) Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature 325(6101):279–281

    Article  CAS  PubMed  Google Scholar 

  3. Opoku-Temeng C, Zhou J, Zheng Y, Su J, Sintim HO (2016) Cyclic dinucleotide (c-di-GMP, c-di-AMP, and cGAMP) signalings have come of age to be inhibited by small molecules. Chem Commun (Camb) 52(60):9327–9342

    Article  CAS  Google Scholar 

  4. Kalia D, Merey G, Nakayama S, Zheng Y, Zhou J, Luo Y, Guo M, Roembke BT, Sintim HO (2013) Nucleotide, c-di-GMP, c-di-AMP, cGMP, cAMP, (p)ppGpp signaling in bacteria and implications in pathogenesis. Chem Soc Rev 42(1):305–341

    Article  CAS  PubMed  Google Scholar 

  5. Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284(5418):1318–1322

    Article  CAS  PubMed  Google Scholar 

  6. Rabin N, Zheng Y, Opoku-Temeng C, Du Y, Bonsu E, Sintim HO (2015) Biofilm formation mechanisms and targets for developing antibiofilm agents. Future Med Chem 7(4):493–512

    Article  CAS  PubMed  Google Scholar 

  7. Römling U, Gomelsky M, Galperin MY (2005) C-di-GMP: the dawning of a novel bacterial signalling system. Mol Microbiol 57(3):629–639

    Article  PubMed  Google Scholar 

  8. Schirmer T, Jenal U (2009) Structural and mechanistic determinants of c-di-GMP signalling. Nat Rev Microbiol 7(10):724–735

    Article  CAS  PubMed  Google Scholar 

  9. Paul R, Weiser S, Amiot NC, Chan C, Schirmer T, Giese B, Jenal U (2004) Cell cycle-dependent dynamic localization of a bacterial response regulator with a novel di-guanylate cyclase output domain. Genes Dev 18(6):715–727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chan C, Paul R, Samoray D, Amiot NC, Giese B, Jenal U, Schirmer T (2004) Structural basis of activity and allosteric control of diguanylate cyclase. Proc Natl Acad Sci U S A 101(49):17084–17089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Galperin MY, Nikolskaya AN, Koonin EV (2001) Novel domains of the prokaryotic two-component signal transduction systems. FEMS Microbiol Lett 203(1):11–21

    Article  CAS  PubMed  Google Scholar 

  12. Dahlstrom KM, Giglio KM, Sondermann H, O'Toole GA (2016) The inhibitory site of a diguanylate cyclase is a necessary element for interaction and signaling with an effector protein. J Bacteriol 198(11):1595–1603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dahlstrom KM, Giglio KM, Collins AJ, Sondermann H, O'Toole GA (2015) Contribution of physical interactions to signaling specificity between a diguanylate cyclase and its effector. MBio 6(6):e01978–e01915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schmidt AJ, Ryjenkov DA, Gomelsky M (2005) The ubiquitous protein domain EAL is a cyclic diguanylate-specific phosphodiesterase: enzymatically active and inactive EAL domains. J Bacteriol 187(14):4774–4781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rinaldo S, Paiardini A, Stelitano V, Brunotti P, Cervoni L, Fernicola S, Protano C, Vitali M, Cutruzzolà F, Giardina G (2015) Structural basis of functional diversification of the HD-GYP domain revealed by the Pseudomonas aeruginosa PA4781 protein, which displays an unselective bimetallic binding site. J Bacteriol 197(8):1525–1535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Amikam D, Galperin MY (2006) PilZ domain is part of the bacterial c-di-GMP binding protein. Bioinformatics 22(1):3–6

    Article  CAS  PubMed  Google Scholar 

  17. Merighi M, Lee VT, Hyodo M, Hayakawa Y, Lory S (2007) The second messenger bis-(3′-5′)-cyclic-GMP and its PilZ domain-containing receptor Alg44 are required for alginate biosynthesis in Pseudomonas aeruginosa. Mol Microbiol 65(4):876–895

    Article  CAS  PubMed  Google Scholar 

  18. Ryjenkov DA, Simm R, Römling U, Gomelsky M (2006) The PilZ domain is a receptor for the second messenger c-di-GMP: the PilZ domain protein YcgR controls motility in enterobacteria. J Biol Chem 281(41):30310–30314

    Article  CAS  PubMed  Google Scholar 

  19. Christen M, Christen B, Allan MG, Folcher M, Jenö P, Grzesiek S, Jenal U (2007) DgrA is a member of a new family of cyclic diguanosine monophosphate receptors and controls flagellar motor function in Caulobacter crescentus. Proc Natl Acad Sci U S A 104(10):4112–4117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lee VT, Matewish JM, Kessler JL, Hyodo M, Hayakawa Y, Lory S (2007) A cyclic-di-GMP receptor required for bacterial exopolysaccharide production. Mol Microbiol 65(6):1474–1484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Duerig A, Abel S, Folcher M, Nicollier M, Schwede T, Amiot N, Giese B, Jenal U (2009) Second messenger-mediated spatiotemporal control of protein degradation regulates bacterial cell cycle progression. Genes Dev 23(1):93–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Navarro MV, De N, Bae N, Wang Q, Sondermann H (2009) Structural analysis of the GGDEF-EAL domain-containing c-di-GMP receptor FimX. Structure 17(8):1104–1116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Qi Y, Chuah ML, Dong X, Xie K, Luo Z, Tang K, Liang ZX (2011) Binding of cyclic diguanylate in the non-catalytic EAL domain of FimX induces a long-range conformational change. J Biol Chem 286(4):2910–2917

    Article  CAS  PubMed  Google Scholar 

  24. Tao F, He YW, Wu DH, Swarup S, Zhang LH (2010) The cyclic nucleotide monophosphate domain of Xanthomonas campestris global regulator Clp defines a new class of cyclic di-GMP effectors. J Bacteriol 192(4):1020–1029

    Article  CAS  PubMed  Google Scholar 

  25. Chin KH, Lee YC, Tu ZL, Chen CH, Tseng YH, Yang JM, Ryan RP, McCarthy Y, Dow JM, Wang AH, Chou SH (2010) The cAMP receptor-like protein CLP is a novel c-di-GMP receptor linking cell-cell signaling to virulence gene expression in Xanthomonas campestris. J Mol Biol 396(3):646–662

    Article  CAS  PubMed  Google Scholar 

  26. Hickman JW, Harwood CS (2008) Identification of FleQ from Pseudomonas aeruginosa as a c-di-GMP-responsive transcription factor. Mol Microbiol 69(2):376–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Arora SK, Ritchings BW, Almira EC, Lory S, Ramphal R (1997) A transcriptional activator, FleQ, regulates mucin adhesion and flagellar gene expression in Pseudomonas aeruginosa in a cascade manner. J Bacteriol 179(17):5574–5581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Krasteva PV, Fong JCN, Shikuma NJ, Beyhan S, Navarro M, Yildiz FH, Sondermann H (2010) Vibrio cholerae VpsT regulates matrix production and motility by directly sensing cyclic di-GMP. Science 327(5967):866–868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Smith KD, Lipchock SV, Ames TD, Wang J, Breaker RR, Strobel SA (2009) Structural basis of ligand binding by a c-di-GMP riboswitch. Nat Struct Mol Biol 16(12):1218–1223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sudarsan N, Lee ER, Weinberg Z, Moy RH, Kim JN, Link KH, Breaker RR (2008) Riboswitches in eubacteria sense the second messenger cyclic di-GMP. Science 321(5887):411–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lee ER, Baker JL, Weinberg Z, Sudarsan N, Breaker RR (2010) An allosteric self-splicing ribozyme triggered by a bacterial second messenger. Science 329(5993):845–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Smith KD, Shanahan CA, Moore EL, Simon AC, Strobel SA (2011) Structural basis of differential ligand recognition by two classes of bis-(3′-5′)-cyclic dimeric guanosine monophosphate-binding riboswitches. Proc Natl Acad Sci U S A 108(19):7757–7762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lori C, Ozaki S, Steiner S, Böhm R, Abel S, Dubey BN, Schirmer T, Hiller S, Jenal U (2015) Cyclic di-GMP acts as a cell cycle oscillator to drive chromosome replication. Nature 523(7559):236–239

    Article  CAS  PubMed  Google Scholar 

  34. Dubey BN, Lori C, Ozaki S, Fucile G, Plaza-Menacho I, Jenal U, Schirmer T (2016) Cyclic di-GMP mediates a histidine kinase/phosphatase switch by noncovalent domain cross-linking. Sci Adv 2(9):e1600823

    Article  PubMed  PubMed Central  Google Scholar 

  35. Xu LH, Venkataramani P, Ding YC, Liu Y, Deng YY, Yong GL, Xin LY, Ye RJ, Zhang LH, Yang L, Liang ZX (2016) A cyclic di-GMP-binding adaptor protein interacts with histidine kinase to regulate two-component signaling. J Biol Chem 291(31):16112–16123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Petrova OE, Sauer K (2011) SagS contributes to the motile-sessile switch and acts in concert with BfiSR to enable Pseudomonas aeruginosa biofilm formation. J Bacteriol 193(23):6614–6628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gupta K, Marques CN, Petrova OE, Sauer K (2013) Antimicrobial tolerance of Pseudomonas aeruginosa biofilms is activated during an early developmental stage and requires the two-component hybrid SagS. J Bacteriol 195(21):4975–4987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Burdette DL, Monroe KM, Sotelo-Troha K, Iwig JS, Eckert B, Hyodo M, Hayakawa Y, Vance RE (2011) STING is a direct innate immune sensor of cyclic di-GMP. Nature 478(7370):515–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li W, Cui T, Hu L, Wang Z, Li Z, He ZG (2015) Cyclic diguanylate monophosphate directly binds to human siderocalin and inhibits its antibacterial activity. Nat Commun 6:8330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hinsa SM, Espinosa-Urgel M, Ramos JL, O'Toole GA (2003) Transition from reversible to irreversible attachment during biofilm formation by Pseudomonas fluorescens WCS365 requires an ABC transporter and a large secreted protein. Mol Microbiol 49(4):905–918

    Article  CAS  PubMed  Google Scholar 

  41. Monds RD, Newell PD, Gross RH, O'Toole GA (2007) Phosphate-dependent modulation of c-di-GMP levels regulates Pseudomonas fluorescens Pf0-1 biofilm formation by controlling secretion of the adhesin LapA. Mol Microbiol 63(3):656–679

    Article  CAS  PubMed  Google Scholar 

  42. Newell PD, Monds RD, O'Toole GA (2009) LapD is a bis-(3′,5′)-cyclic dimeric GMP-binding protein that regulates surface attachment by Pseudomonas fluorescens Pf0-1. Proc Natl Acad Sci U S A 106(9):3461–3466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Newell PD, Boyd CD, Sondermann H, O'Toole GA (2011) A c-di-GMP effector system controls cell adhesion by inside-out signaling and surface protein cleavage. PLoS Biol 9(2):e1000587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fang X, Gomelsky M (2010) A post-translational, c-di-GMP-dependent mechanism regulating flagellar motility. Mol Microbiol 76(5):1295–1305

    Article  CAS  PubMed  Google Scholar 

  45. Paul K, Nieto V, Carlquist WC, Blair DF, Harshey RM (2010) The c-di-GMP binding protein YcgR controls flagellar motor direction and speed to affect chemotaxis by a "backstop brake" mechanism. Mol Cell 38(1):128–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Boehm A, Kaiser M, Li H, Spangler C, Kasper CA, Ackermann M, Kaever V, Sourjik V, Roth V, Jenal U (2010) Second messenger-mediated adjustment of bacterial swimming velocity. Cell 141(1):107–116

    Article  CAS  PubMed  Google Scholar 

  47. Fazli M, O'Connell A, Nilsson M, Niehaus K, Dow JM, Givskov M, Ryan RP, Tolker-Nielsen T (2011) The CRP/FNR family protein Bcam1349 is a c-di-GMP effector that regulates biofilm formation in the respiratory pathogen Burkholderia cenocepacia. Mol Microbiol 82(2):327–341

    Article  CAS  PubMed  Google Scholar 

  48. Wilksch JJ, Yang J, Clements A, Gabbe JL, Short KR, Cao H, Cavaliere R, James CE, Whitchurch CB, Schembri MA, Chuah ML, Liang ZX, Wijburg OL, Jenney AW, Lithgow T, Strugnell RA (2011) MrkH, a novel c-di-GMP-dependent transcriptional activator, controls Klebsiella pneumoniae biofilm formation by regulating type 3 fimbriae expression. PLoS Pathog 7(8):e1002204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Valentini M, Filloux A (2016) Biofilms and cyclic di-GMP (c-di-GMP) signaling: lessons from Pseudomonas aeruginosa and other bacteria. J Biol Chem 291(24):12547–12555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kulasakara H, Lee V, Brencic A, Liberati N, Urbach J, Miyata S, Lee DG, Neely AN, Hyodo M, Hayakawa Y, Ausubel FM, Lory S (2006) Analysis of Pseudomonas aeruginosa diguanylate cyclases and phosphodiesterases reveals a role for bis-(3′-5′)-cyclic-GMP in virulence. Proc Natl Acad Sci U S A 103(8):2839–2844

    Article  PubMed  Google Scholar 

  51. Kader A, Simm R, Gerstel U, Morr M, Römling U (2006) Hierarchical involvement of various GGDEF domain proteins in rdar morphotype development of Salmonella enterica serovar Typhimurium. Mol Microbiol 60(3):602–616

    Article  CAS  PubMed  Google Scholar 

  52. Ohana P, Delmer DP, Carlson RW, Glushka J, Azadi P, Bacic T, Benziman M (1998) Identification of a novel triterpenoid saponin from Pisum sativum as a specific inhibitor of the diguanylate cyclase of Acetobacter xylinum. Plant Cell Physiol 39(2):144–152

    Article  CAS  PubMed  Google Scholar 

  53. Ohana P, Delmer DP, Volman G, Benziman M (1998) Glycosylated triterpenoid saponin: a specific inhibitor of diguanylate cyclase from Acetobacter xylinum. Biological activity and distribution. Plant Cell Physiol 39(2):153–159

    Article  CAS  Google Scholar 

  54. Sambanthamoorthy K, Sloup RE, Parashar V, Smith JM, Kim EE, Semmelhack MF, Neiditch MB, Waters CM (2012) Identification of small molecules that antagonize diguanylate cyclase enzymes to inhibit biofilm formation. Antimicrob Agents Chemother 56(10):5202–5211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sambanthamoorthy K, Luo C, Pattabiraman N, Feng X, Koestler B, Waters CM, Palys TJ (2014) Identification of small molecules inhibiting diguanylate cyclases to control bacterial biofilm development. Biofouling 30(1):17–28

    Article  CAS  PubMed  Google Scholar 

  56. Fernicola S, Paiardini A, Giardina G, Rampioni G, Leoni L, Cutruzzola F, Rinaldo S (2016) In silico discovery and in vitro validation of catechol-containing sulfonohydrazide compounds as potent inhibitors of the diguanylate cyclase PleD. J Bacteriol 198(1):147–156

    Article  CAS  Google Scholar 

  57. Ryan RP, Fouhy Y, Lucey JF, Jiang BL, He YQ, Feng JX, Tang JL, Dow JM (2007) Cyclic di-GMP signalling in the virulence and environmental adaptation of Xanthomonas campestris. Mol Microbiol 63(2):429–442

    Article  CAS  PubMed  Google Scholar 

  58. Zheng Y, Tsuji G, Opoku-Temeng C, Sintim HO (2016) Inhibition of P. aeruginosa c-di-GMP phosphodiesterase RocR and swarming motility by a benzoisothiazolinone derivative. Chem Sci 7(9):6238–6244

    Article  CAS  Google Scholar 

  59. Zhou J, Watt S, Wang J, Nakayama S, Sayre DA, Lam YF, Lee VT, Sintim HO (2013) Potent suppression of c-di-GMP synthesis via I-site allosteric inhibition of diguanylate cyclases with 2′-F-c-di-GMP. Bioorg Med Chem 21(14):4396–4404

    Article  CAS  PubMed  Google Scholar 

  60. Wang J, Zhou J, Donaldson GP, Nakayama S, Yan L, Lam YF, Lee VT, Sintim HO (2011) Conservative change to the phosphate moiety of cyclic diguanylic monophosphate remarkably affects its polymorphism and ability to bind DGC, PDE, and PilZ proteins. J Am Chem Soc 133(24):9320–9330

    Article  CAS  PubMed  Google Scholar 

  61. Shanahan CA, Gaffney BL, Jones RA, Strobel SA (2013) Identification of c-di-GMP derivatives resistant to an EAL domain phosphodiesterase. Biochemist 52(2):365–377

    Article  CAS  Google Scholar 

  62. Fernicola S, Torquati I, Paiardini A, Giardina G, Rampioni G, Messina M, Leoni L, Del Bello F, Petrelli R, Rinaldo S, Cappellacci L, Cutruzzolà F (2015) Synthesis of triazole-linked analogues of c-di-GMP and their interactions with diguanylate cyclase. J Med Chem 58(20):8269–8284

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We acknowledge funding from the NSF: CHE-1307218 and CHE-1636752.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herman O. Sintim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Opoku-Temeng, C., Sintim, H.O. (2017). Targeting c-di-GMP Signaling, Biofilm Formation, and Bacterial Motility with Small Molecules. In: Sauer, K. (eds) c-di-GMP Signaling. Methods in Molecular Biology, vol 1657. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7240-1_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7240-1_31

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7239-5

  • Online ISBN: 978-1-4939-7240-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics