Skip to main content

Exploiting Natural Variation to Discover Candidate Genes Involved in Photosynthesis-Related Traits

  • Protocol
  • First Online:
Photorespiration

Abstract

Naturally occurring genetic variation in plants can be very useful to dissect the complex regulation of primary metabolism as well as of physiological traits such as photosynthesis and photorespiration. The physiological and genetic mechanisms underlying natural variation in closely related species or accessions may provide important information that can be used to improve crop yield. In this chapter we describe in detail the use of a population of introgression lines (ILs), with the Solanum pennellii IL population as a study case, as a tool for the identification of genomic regions involved in the control of photosynthetic efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Betti M, Bauwe H, Busch FA et al (2016) Manipulating photorespiration to increase plant productivity: recent advances and perspectives for crop improvement. J Exp Bot 67:2977–2988

    Article  CAS  PubMed  Google Scholar 

  2. Sage RF (2013) Photorespiratory compensation: a driver for biological diversity. Plant Biol 15:624–638

    Article  CAS  PubMed  Google Scholar 

  3. Flood PJ, Harbinson J, Aarts MGM (2011) Natural genetic variation in plant photosynthesis. Trends Plant Sci 16:327–335

    Article  CAS  PubMed  Google Scholar 

  4. Nunes-Nesi A, Nascimento VL, Silva FMO, Zsögön A, Araújo WL, Sulpice R (2016) Natural genetic variation for morphological and molecular determinants of plant growth and yield. J Exp Bot 67:2989–3001

    Article  CAS  PubMed  Google Scholar 

  5. Lawson T, Kramer DM, Raines CA (2012) Improving yield by exploiting mechanisms underlying natural variation of photosynthesis. Curr Opin Biotechnol 23:215–220

    Article  CAS  PubMed  Google Scholar 

  6. Tanksley SD (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066

    Article  CAS  PubMed  Google Scholar 

  7. Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142:169–196

    Article  CAS  Google Scholar 

  8. Tian F, Li DJ, Fu Q et al (2006) Construction of introgression lines carrying wild rice (Oryza rufipogon Griff.) segments in cultivated rice (Oryza sativa L.) background and characterization of introgressed segments associated with yield-related traits. Theor Appl Genet 112:570–580

    Article  CAS  PubMed  Google Scholar 

  9. Li Z, Fu BY, Gao YM, Xu JL, Ali J, Lafitte HR et al (2005) Genome-wide introgression lines and their use in genetic and molecular dissection of complex phenotypes in rice ( Oryza sativa L.) Plant Mol Biol 59:33–52

    Article  CAS  PubMed  Google Scholar 

  10. Jena KK, Kochert G, Khush GS (1992) RFLP analysis of rice (Oryza sativa L.) introgression lines. Theor Appl Genet 84:608–616

    CAS  PubMed  Google Scholar 

  11. Eshed Y, Zamir D (1994) A genomic library of Lycopersicon pennellii in Lycopersicon esculentum – a tool for fine mapping of genes. Euphytica 79:175–179

    Article  CAS  Google Scholar 

  12. Canady MA, Meglic V, Chetelat RT (2005) A library of Solanum lycopersicoides introgression lines in cultivated tomato. Genome 48:685–697

    Article  CAS  PubMed  Google Scholar 

  13. Do PT, Prudent M, Sulpice R, Causse M, Fernie AR (2010) The influence of fruit load on the tomato pericarp metabolome in a Solanum chmielewskii introgression line population. Plant Physiol 154:1128–1142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chitwood DH, Kumar R, Headland LR, Ranjan A, Covigton MF, Ichihashi Y et al (2013) A quantitative genetic basis for leaf morphology in a set of precisely defined tomato introgression lines. Plant Cell 25:2465–2481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fulop D, Ranjan A, Ofner I et al (2016) A new advanced backcross tomato population enables high resolution leaf QTL mapping and gene identification. G3 (Bethesda) 6(10):3169–3184

    Google Scholar 

  16. Eshed Y, Zamir D (1995) An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics 141:1147–1162

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Obata T, Florian A, Timm S, Bauwe H, Fernie AR (2016) On the metabolic interactions of (photo)respiration. J Exp Bot 67:3003–3014

    Article  CAS  PubMed  Google Scholar 

  18. Busch FA (2013) Current methods for estimating the rate of photorespiration in leaves. Plant Biol 15:648–655

    Article  CAS  PubMed  Google Scholar 

  19. Gu J, Yin X, Struik PC, Stomph TJ, Wang H (2012) Using chromosome introgression lines to map quantitative trait loci for photosynthesis parameters in rice (Oryza sativa L.) leaves under drought and well-watered field conditions. J Exp Bot 63:455–469

    Article  CAS  PubMed  Google Scholar 

  20. Gu J, Yin X, Stomph TJ, Struik PC (2014) Can exploiting natural genetic variation in leaf photosynthesis contribute to increasing rice productivity? A simulation analysis. Plant Cell Environ 37:22–34

    Article  CAS  PubMed  Google Scholar 

  21. Kopka J, Schauer N, Krueger S et al (2005) GMD@CSB.DB: the Golm metabolome database. Bioinformatics 21:1635–1638

    Article  CAS  PubMed  Google Scholar 

  22. Zamir D (2001) Improving plant breeding with exotic genetic libraries. Nat Rev Genet 2:983–989

    Article  CAS  PubMed  Google Scholar 

  23. Eshed Y, Abu-Abied M, Saranga Y, Zamir D (1992) Lycopersicon esculentum lines containing small overlapping introgressions from L. pennellii. Theor Appl Genet 83:1027–1034

    Article  CAS  PubMed  Google Scholar 

  24. Alseekh S, Ofner I, Pleban T, Tripodi P, Di Dato F, Cammareri M et al (2013) Resolution by recombination: breaking up Solanum pennellii introgressions. Trends Plant Sci 18:536–538

    Article  CAS  PubMed  Google Scholar 

  25. Aucique-Perez CE, Rodrigues FÁ, Moreira WR, DaMatta FM (2014) Leaf gas exchange and chlorophyll a fluorescence in wheat plants supplied with silicon and infected with Pyricularia oryzae. Phytopathology 104:143–149

    Article  Google Scholar 

  26. Maxwell K, Johnson GN (2000) Chlorophyll fluorescence – a practical guide. J Exp Bot 51:659–668

    Article  CAS  PubMed  Google Scholar 

  27. Montes JM, Melchinger AE, Reif JC (2007) Novel throughput phenotyping platforms in plant genetic studies. Trends Plant Sci 12:433–436

    Article  CAS  PubMed  Google Scholar 

  28. Furbank RT, Von Caemmerer S, Sheehy J, Edwards G (2009) C4 rice: a challenge for plant phenomics. Funct Plant Biol 36:845–856

    Article  Google Scholar 

  29. Valentini R, Epron D, Angelis P, Matteucci G, Dreyer E (1995) In situ estimation of net CO2 assimilation, photosynthetic electron flow and photorespiration in Turkey oak (Q. cerris L.) leaves: diurnal cycles under different levels of water supply. Plant Cell Environ 18:631–640

    Article  CAS  Google Scholar 

  30. Peterson RB (1990) Effects of irradiance on the in vivo CO2: O2 specificity factor in tobacco using simultaneous gas exchange and fluorescence techniques. Plant Physiol 94:892–898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Niinemets Ü, Sack L (2006) Structural determinants of leaf light-harvesting capacity and photosynthetic potentials. In: Esser K, Lüttge U, Beyschlag W, Murata J (eds) Progress in botany, 67th edn. Springer, Berlin

    Google Scholar 

  32. Niinemets Ü, Cescatti A, Rodeghiero M, Tosens T (2005) Leaf internal diffusion conductance limits photosynthesis more strongly in older leaves of Mediterranean evergreen broad-leaved species. Plant Cell Environ 28:1552–1566

    Article  Google Scholar 

  33. Niinemets Ü, Díaz-Espejo A, Flexas J, Galmés J, Warren CR (2009) Role of mesophyll diffusion conductance in constraining potential photosynthetic productivity in the field. J Exp Bot 60:2249–2270

    Article  CAS  PubMed  Google Scholar 

  34. Fernie AR, Bauwe H, Eisenhut M, Florian A, Hanson DT, Hagemann M et al (2013) Perspectives on plant photorespiratory metabolism. Plant Biol 15:748–753

    Article  CAS  PubMed  Google Scholar 

  35. Osorio S, Alba R, Nikoloski Z, Kochevenko A, Fernie AR, Giovannoni JJ (2012) Integrative comparative analyses of transcript and metabolite profiles from pepper and tomato ripening and development stages uncovers species-specific patterns of network regulatory behavior. Plant Physiol 159:1713–1729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Luedemann A, Von Malotky L, Erban A, Kopka J (2012) TagFinder: preprocessing software for the fingerprinting and the profiling of gas chromatography-mass spectrometry based metabolome analyses. Methods Mol Biol 860:255–286

    Article  CAS  PubMed  Google Scholar 

  37. Fernie AR, Klee HJ (2011) The use of natural genetic diversity in the understanding of metabolic organization and regulation. Front Plant Sci 2:1–10

    Google Scholar 

  38. Schauer N, Semel Y, Balbo I, Steinfath M, Repsilber D, Selbig J et al (2008) Mode of inheritance of primary metabolic traits in tomato. Plant Cell 20:509–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pflieger S, Lefebvre V, Causse M (2001) The candidate gene approach in plant genetics: a review. Mol Breed 7:275–291

    Article  CAS  Google Scholar 

  40. Etienne C, Rothan C, Moing A, Plomion C, Bodénès C, Svanella-Dumas L et al (2002) Candidate genes and QTLs for sugar and organic acid content in peach [Prunus persica (L.) Batsch]. Theor Appl Genet 105:145–159

    Article  CAS  PubMed  Google Scholar 

  41. Bolger A, Scossa F, Bolger ME, Lanz C, Maumus F, Tohge T et al (2014) The genome of the stress-tolerant wild tomato species Solanum pennellii. Nat Genet 46:1034–1038

    Article  CAS  PubMed  Google Scholar 

  42. Ahsan M, Lundberg AE, Kierczak M, Siegel PB, Carlborg O, Marklund S (2013) Identification of candidate genes and mutations in QTL regions for chicken growth using bioinformatic analysis of NGS and SNP-chip data. Front Genet 4:1–8

    Article  CAS  Google Scholar 

  43. Chen C, DeClerck G, Tian F, Spooner W, McCouch S, Buckler E (2012) PICARA, an analytical pipeline providing probabilistic inference about a priori candidates genes underlying genome-wide association QTL in plants. PLoS One 7:e46596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ikeda M, Miura K, Aya K, Kitano H, Matsuoka M (2013) Genes offering the potential for designing yield-related traits in rice. Curr Opin Plant Biol 16:213–220

    Article  CAS  PubMed  Google Scholar 

  45. Schauer N, Semel Y, Roessner U, Gur A, Balbo I, Carrari F et al (2006) Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement. Nat Biotechnol 24:447–454

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support was provided by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) (grant numbers APQ-00688-12, CRA BDS-00040-14 and BPD-00019-16), Max Planck Society to A.N.N. and W.L.A. Research fellowships granted by CNPq to A.N.N. and W.L.A. are also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriano Nunes-Nesi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

de Oliveira Silva, F.M., de Ávila Silva, L., Araújo, W.L., Zsögön, A., Nunes-Nesi, A. (2017). Exploiting Natural Variation to Discover Candidate Genes Involved in Photosynthesis-Related Traits. In: Fernie, A., Bauwe, H., Weber, A. (eds) Photorespiration. Methods in Molecular Biology, vol 1653. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7225-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7225-8_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7224-1

  • Online ISBN: 978-1-4939-7225-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics