Skip to main content

Supported Fluid Lipid Bilayer as a Scaffold to Direct Assembly of RNA Nanostructures

  • Protocol
  • First Online:
RNA Nanostructures

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1632))

Abstract

RNA architectonics offers the possibility to design and assemble RNA into specific shapes, such as nanoscale 3D solids or nanogrids. Combining the minute size of these programmable shapes with precise positioning on a surface further enhances their potential as building blocks in nanotechnology and nanomedicine. Here we describe a bottom-up approach to direct the arrangement of nucleic acid nanostructures by using a supported fluid lipid bilayer as a surface scaffold. The strong attractive electrostatic interactions between RNA polyanions and cationic lipids promote RNA adsorption and self-assembly. Protocol steps for the characterization of assembled RNA complexes via several complementary methods (QCM-D, ellipsometry, confocal fluorescence microscopy, AFM) are also provided. Due to their tunable nature, lipid bilayers can be used to organize RNA laterally on the micrometer scale and thus facilitate the building of more complex 3D structures. The bilayer-based approach can be extended to other programmable RNA or DNA objects to construct intricate structures, such as 2D grids or 3D cages, with high precision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Severcan I, Geary C, Chworos A et al (2010) A polyhedron made of tRNAs. Nat Chem 2:772–779. doi:10.1038/nchem.733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. K a A, Bindewald E, Yaghoubian AJ et al (2010) In vitro assembly of cubic RNA-based scaffolds designed in silico. Nat Nanotechnol 5:676–682. doi:10.1038/nnano.2010.160

    Article  Google Scholar 

  3. Nasalean L, Baudrey S, Leontis NB, Jaeger L (2006) Controlling RNA self-assembly to form filaments. Nucleic Acids Res 34:1381–1392. doi:10.1093/nar/gkl008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Geary C, Chworos A, Jaeger L (2011) Promoting RNA helical stacking via A-minor junctions. Nucleic Acids Res 39:1066–1080. doi:10.1093/nar/gkq748

    Article  CAS  PubMed  Google Scholar 

  5. Severcan I, Geary C, Verzemnieks E et al (2009) Square-shaped RNA particles from different RNA folds. Nano Lett 9:1270–1277. doi:10.1021/nl900261h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Grabow WW, Zakrevsky P, Afonin KA et al (2011) Self-assembling RNA nanorings based on RNAI/II inverse kissing complexes. Nano Lett 11:878–887. doi:10.1021/nl104271s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chworos A, Severcan I, Koyfman AY et al (2004) Building programmable jigsaw puzzles with RNA. Science 306:2068–2072. doi:10.1126/science.1104686

    Article  CAS  PubMed  Google Scholar 

  8. Alivisatos AP, Johnsson KP, Peng X et al (1996) Organization of “nanocrystal molecules” using DNA. Nature 382:609–611. doi:10.1038/382609a0

    Article  CAS  PubMed  Google Scholar 

  9. Mirkin C, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382:607–609

    Article  CAS  PubMed  Google Scholar 

  10. Aldaye FA, Sleiman HF (2007) Dynamic DNA templates for discrete gold nanoparticle assemblies: control of geometry, modularity, write/erase and structural switching. J Am Chem Soc 129:4130–4131. doi:10.1021/ja070017i

    Article  CAS  PubMed  Google Scholar 

  11. Michanek A, Björklund M, Nylander T, Sparr E (2012) ssRNA base pairing at a bilayer interface can be controlled by the acyl chain order. Soft Matter 8:10428. doi:10.1039/c2sm06700e

    Article  CAS  Google Scholar 

  12. Dabkowska AP, Michanek A, Jaeger L et al (2015) Assembly of RNA nanostructures on supported lipid bilayers. Nanoscale 7:583–596. doi:10.1039/C4NR05968A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Suzuki Y, Endo M, Sugiyama H (2015) Lipid-bilayer-assisted two-dimensional self-assembly of DNA origami nanostructures. Nat Commun 6:8052. doi:10.1038/ncomms9052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kocabey S, Kempter S, List J et al (2015) Membrane-assisted growth of DNA origami nanostructure arrays. ACS Nano 9:3530–3539. doi:10.1021/acsnano.5b00161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Harke M, Teppner R, Schulz O et al (1997) Description of a single modular optical setup for ellipsometry, surface plasmons, waveguide modes and their corresponding imaging techniques including Brewster angle microscopy. Rev Sci Instrum 68:3130

    Article  CAS  Google Scholar 

  16. Vandoolaeghe P, Rennie AR, Campbell RA et al (2008) Adsorption of cubic liquid crystalline nanoparticles on model membranes. Soft Matter 4:2267. doi:10.1039/b801630e

    Article  CAS  Google Scholar 

  17. Kern W, Puotinen D (1970) Cleaning solutions based on hydrogen peroxide for use in silicon semiconductor technology. RCA Rev 31:187–206

    CAS  Google Scholar 

  18. Jönsson P, Jonsson MP, Tegenfeldt JO, Höök F (2008) A method improving the accuracy of fluorescence recovery after photobleaching analysis. Biophys J 95:5334–5348. doi:10.1529/biophysj.108.134874

    Article  PubMed  PubMed Central  Google Scholar 

  19. Keller CA, Kasemo B (1998) Surface specific kinetics of lipid vesicle adsorption measured with a quartz crystal microbalance. Biophys J 75:1397–1402. doi:10.1016/S0006-3495(98)74057-3

  20. Richter R, Mukhopadhyay A, Brisson A (2003) Pathways of lipid vesicle deposition on solid surfaces: a combined QCM-D and AFM study. Biophys J 85:3035–3047. doi:10.1016/S0006-3495(03)74722-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cho NJ, Frank CW, Kasemo B, Hook F (2010) Quartz crystal microbalance with dissipation monitoring of supported lipid bilayers on various substrates. Nat Protoc 5:1096–1106. doi:10.1038/Nprot.2010.65

    Article  CAS  PubMed  Google Scholar 

  22. Kasemo B, Fant C, Sott K et al (2001) Variations in coupled water, viscoelastic properties, and film thickness of a Mefp-1 protein film during adsorption and cross-linking: a quartz crystal microbalance with dissipation monitoring, ellipsometry, and surface plasmon. Anal Chem 73:5796–5804

    Article  PubMed  Google Scholar 

  23. Azzam RMA, Bashara NM (1996) Ellipsometry and polarized light. Elsevier B.V, Amsterdam

    Google Scholar 

  24. Tiberg F, Landgren M (1993) Characterization of thin nonionic surfactant films at the silica/water interface by means of ellipsometry. Langmuir 9:927–932. doi:10.1021/la00028a009

    Article  CAS  Google Scholar 

  25. de Feijter A, Benjamins J, Veer FA (1978) Ellipsometry as a tool to study the adsorption behavior of synthetic and biopolymers at the air–water interface. Biopolymers 17:1759. doi:10.1002/bip.1978.36017071

    Article  Google Scholar 

  26. Ainalem M-L, Kristen N, Edler KJ et al (2010) DNA binding to zwitterionic model membranes. Langmuir 26:4965–4976. doi:10.1021/la9036327

    Article  CAS  PubMed  Google Scholar 

  27. Nieuwenhuysen P, De Voeght F, Clauwaert J (1981) The molecular weight of Artemia ribosomes, as determined from their refractive-index increment and light-scattering intensity. Biochem J 197:689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aleksandra P. Dabkowska or Emma Sparr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Dabkowska, A.P., Michanek, A., Jaeger, L., Chworos, A., Nylander, T., Sparr, E. (2017). Supported Fluid Lipid Bilayer as a Scaffold to Direct Assembly of RNA Nanostructures. In: Bindewald, E., Shapiro, B. (eds) RNA Nanostructures . Methods in Molecular Biology, vol 1632. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7138-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7138-1_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7137-4

  • Online ISBN: 978-1-4939-7138-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics