Skip to main content

Multiplex Cathepsin Zymography to Detect Amounts of Active Cathepsins K, L, S, and V

  • Protocol
  • First Online:
Zymography

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1626))

  • 2168 Accesses

Abstract

Cysteine cathepsins are powerful proteases that can degrade other proteins, among which are the extracellular matrix proteins collagen and elastin. Multiplex cathepsin zymography is an assay that can quantify the amount of active cathepsins in a cell or tissue preparation. This method works for measuring the amounts of active cathepsins K, L, S, and V in a cell or tissue preparation without requiring the use of antibodies for specific identification which tremendously reduces cost. This chapter will demonstrate the utility and interpretation of this method with mammalian cells and tissue to quantify amounts of active cathepsins K, L, S, and V without complicating signals of the procathepsin. Multiplex cathepsin zymography has many advantages: (1) it separates cathepsins K, L, S, and V by electrophoretic migration distance, (2) allows visual confirmation of cathepsin identity, (3) does not detect procathepsins, and (4) can be quantified with densitometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chapman HA, Riese RJ, Shi GP (1997) Emerging roles for cysteine proteases in human biology. Annu Rev Physiol 59:63–88

    Article  CAS  PubMed  Google Scholar 

  2. Reiser J, Adair B, Reinheckel T (2010) Specialized roles for cysteine cathepsins in health and disease. J Clin Invest 120:3421–3431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bromme D, Li Z, Barnes M, Mehler E (1999) Human cathepsin V functional expression, tissue distribution, electrostatic surface potential, enzymatic characterization, and chromosomal localization. Biochemistry 38:2377–2385

    Article  CAS  PubMed  Google Scholar 

  4. Lafarge JC, Naour N, Clement K, Guerre-Millo M (2010) Cathepsins and cystatin C in atherosclerosis and obesity. Biochimie 92:1580–1586

    Article  CAS  PubMed  Google Scholar 

  5. Sukhova GK, Zhang Y, Pan JH, Wada Y, Yamamoto T, Naito M, Kodama T, Tsimikas S, Witztum JL, Lu ML, Sakara Y, Chin MT, Libby P, Shi GP (2003) Deficiency of cathepsin S reduces atherosclerosis in LDL receptor-deficient mice. J Clin Invest 111:897–906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lecaille F, Bromme D, Lalmanach G (2008) Biochemical properties and regulation of cathepsin K activity. Biochimie 90:208–226

    Article  CAS  PubMed  Google Scholar 

  7. Lutgens E, Lutgens SP, Faber BC, Heeneman S, Gijbels MM, de Winther MP, Frederik P, van der Made I, Daugherty A, Sijbers AM, Fisher A, Long CJ, Saftig P, Black D, Daemen MJ, Cleutjens KB (2006) Disruption of the cathepsin K gene reduces atherosclerosis progression and induces plaque fibrosis but accelerates macrophage foam cell formation. Circulation 113:98–107

    Article  CAS  PubMed  Google Scholar 

  8. Platt MO, Ankeny RF, Shi GP, Weiss D, Vega JD, Taylor WR, Jo H (2007) Expression of cathepsin K is regulated by shear stress in cultured endothelial cells and is increased in endothelium in human atherosclerosis. Am J Physiol Heart Circ Physiol 292:H1479–H1486

    Article  CAS  PubMed  Google Scholar 

  9. Littlewood-Evans AJ, Bilbe G, Bowler WB, Farley D, Wlodarski B, Kokubo T, Inaoka T, Sloane J, Evans DB, Gallagher JA (1997) The osteoclast-associated protease cathepsin K is expressed in human breast carcinoma. Cancer Res 57:5386–5390

    CAS  PubMed  Google Scholar 

  10. Snoek-van Beurden PA, Von den Hoff JW (2005) Zymographic techniques for the analysis of matrix metalloproteinases and their inhibitors. Biotechniques 38:73–83

    Article  CAS  PubMed  Google Scholar 

  11. Wilder CL, Park K-Y, Keegan PM, Platt MO (2011) Manipulating substrate and pH in zymography protocols selectively distinguishes cathepsins K, L, S, and V activity in cells and tissues. Arch Biochem Biophys 516:52–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li WA, Barry ZT, Cohen JD, Wilder CL, Deeds RJ, Keegan PM, Platt MO (2010) Detection of femtomole quantities of mature cathepsin K with zymography. Anal Biochem 401:91–98

    Article  CAS  PubMed  Google Scholar 

  13. McGrath ME (1999) The lysosomal cysteine proteases. Annu Rev Biophys Biomol Struct 28:181–204

    Article  CAS  PubMed  Google Scholar 

  14. Barry ZT, Platt MO (2012) Cathepsin S cannibalism of cathepsin K as a mechanism to reduce type I collagen degradation. J Biol Chem 287:27723–27730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dumas JE, Platt MO (2013) Systematic optimization of multiplex zymography protocol to detect active cathepsins K, L, S, and V in healthy and diseased tissue: compromise among limits of detection, reduced time, and resources. Mol Biotechnol 54:1038–1047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Keegan PM, Surapaneni S, Platt MO (2012) Sickle cell disease activates peripheral blood mononuclear cells to induce cathepsins K and V activity in endothelial cells. Anemia 2012:201781

    Article  PubMed  PubMed Central  Google Scholar 

  17. Keegan PM, Wilder CL, Platt MO (2012) Tumor necrosis factor alpha stimulates cathepsin K and V activity via juxtacrine monocyte-endothelial cell signaling and JNK activation. Mol Cell Biochem 367:65–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Parker IK, Roberts LM, Hansen L, Gleason RL Jr, Sutliff RL, Platt MO (2014) Pro-atherogenic shear stress and HIV proteins synergistically upregulate cathepsin K in endothelial cells. Ann Biomed Eng 42:1185–1194

    Article  PubMed  PubMed Central  Google Scholar 

  19. Platt MO, Ankeny RF, Jo H (2006) Laminar shear stress inhibits cathepsin L activity in endothelial cells. Arterioscler Thromb Vasc Biol 26:1784–1790

    Article  CAS  PubMed  Google Scholar 

  20. Park KY, Li G, Platt MO (2015) Monocyte-derived macrophage assisted breast cancer cell invasion as a personalized, predictive metric to score metastatic risk. Sci Rep 5:13855

    Article  PubMed  PubMed Central  Google Scholar 

  21. Park KY, Li WA, Platt MO (2012) Patient specific proteolytic activity of monocyte-derived macrophages and osteoclasts predicted with temporal kinase activation states during differentiation. Integr Biol (Camb) 4:1459–1469

    Article  CAS  Google Scholar 

  22. Burton LJ, Smith BA, Smith BN, Loyd Q, Nagappan P, McKeithen D, Wilder CL, Platt MO, Hudson T, Odero-Marah VA (2015) Muscadine grape skin extract can antagonize snail-cathepsin L-mediated invasion, migration and osteoclastogenesis in prostate and breast cancer cells. Carcinogenesis 36:1019–1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen B, Platt MO (2011) Multiplex zymography captures stage-specific activity profiles of cathepsins K, L, and S in human breast, lung, and cervical cancer. J Transl Med 9:109

    Article  PubMed  PubMed Central  Google Scholar 

  24. Porter KM, Wieser FA, Wilder CL, Sidell N, Platt MO (2016) Cathepsin protease inhibition reduces endometriosis lesion establishment. Reprod Sci 23:623–629

    Article  CAS  PubMed  Google Scholar 

  25. Hansen L, Parker I, Roberts LM, Sutliff RL, Platt MO, Gleason RL Jr (2013) Azidothymidine (AZT) leads to arterial stiffening and intima-media thickening in mice. J Biomech 46:1540–1547

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hansen L, Parker I, Sutliff RL, Platt MO, Gleason RL Jr (2013) Endothelial dysfunction, arterial stiffening, and intima-media thickening in large arteries from HIV-1 transgenic mice. Ann Biomed Eng 41:682–693

    Article  PubMed  Google Scholar 

  27. Caulk AW, Soler J, Platt MO, Gleason RL Jr (2015) Efavirenz treatment causes arterial stiffening in apolipoprotein E-null mice. J Biomech 48:2176–2180

    Article  PubMed  Google Scholar 

  28. Platt MO, Xing Y, Jo H, Yoganathan AP (2006) Cyclic pressure and shear stress regulate matrix metalloproteinases and cathepsin activity in porcine aortic valves. J Heart Valve Dis 15:622–629

    PubMed  Google Scholar 

  29. Balachandran K, Sucosky P, Jo H, Yoganathan AP (2009) Elevated cyclic stretch alters matrix remodeling in aortic valve cusps: implications for degenerative aortic valve disease. Am J Physiol Heart Circ Physiol 296:H756–H764

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manu O. Platt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Platt, M.O. (2017). Multiplex Cathepsin Zymography to Detect Amounts of Active Cathepsins K, L, S, and V. In: Wilkesman, J., Kurz, L. (eds) Zymography. Methods in Molecular Biology, vol 1626. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7111-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7111-4_23

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7109-1

  • Online ISBN: 978-1-4939-7111-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics