Skip to main content

Efficient Gene Knockdowns in Mouse Embryonic Stem Cells Using MicroRNA-Based shRNAs

  • Protocol
  • First Online:
RNAi and Small Regulatory RNAs in Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1622))

Abstract

RNA interference (RNAi) is a powerful gene knockdown technology that has been applied for functional genetic loss-of-function studies in many model eukaryotic systems, including embryonic stem cells (ESCs). Application of RNAi in ESCs allows for dissection of mechanisms by which ESCs self-renew and maintain pluripotency and also for specifying particular cell types needed for cell replacement therapies. Potent RNAi response can be induced by expression of a microRNA-embedded short-hairpin RNA (shRNAmir) cassette that is integrated in the genome by virus infection or site-specific recombination at a defined locus. In this chapter, I will provide detailed protocols to perform shRNAmir-mediated RNAi studies in mouse ESCs using retrovirus infection and loxP site-directed recombination for efficient constitutive and inducible gene knockdown, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156

    Article  CAS  PubMed  Google Scholar 

  2. Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A 78:7634–7638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chambers I, Smith A (2004) Self-renewal of teratocarcinoma and embryonic stem cells. Oncogene 23:7150–7160

    Article  CAS  PubMed  Google Scholar 

  4. Spagnoli FM, Hemmati-Brivanlou A (2006) Guiding embryonic stem cells towards differentiation: lessons from molecular embryology. Curr Opin Genet Dev 16:469–475

    Article  CAS  PubMed  Google Scholar 

  5. Odorico JS, Kaufman DS, Thomson JA (2001) Multilineage differentiation from human embryonic stem cell lines. Stem Cells 19:193–204

    Article  CAS  PubMed  Google Scholar 

  6. Gadue P, Huber TL, Nostro MC, Kattman S, Keller GM (2005) Germ layer induction from embryonic stem cells. Exp Hematol 33:955–964

    Article  CAS  PubMed  Google Scholar 

  7. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  CAS  PubMed  Google Scholar 

  8. Ivanova N, Dobrin R, Lu R, Kotenko I, Levorse J, DeCoste C, Schafer X, Lun Y, Lemischka IR (2006) Dissecting self-renewal in stem cells with RNA interference. Nature 442:533–538

    Article  CAS  PubMed  Google Scholar 

  9. Ding L, Buchholz F (2006) RNAi in embryonic stem cells. Stem Cell Rev 2:11–18

    Article  CAS  PubMed  Google Scholar 

  10. Heidersbach A, Gaspar-Maia A, McManus MT, Ramalho-Santos M (2006) RNA interference in embryonic stem cells and the prospects for future therapies. Gene Ther 13:478–486

    Article  CAS  PubMed  Google Scholar 

  11. Spankuch B, Strebhardt K (2005) RNA interference-based gene silencing in mice: the development of a novel therapeutical strategy. Curr Pharm Des 11:3405–3419

    Article  PubMed  Google Scholar 

  12. Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448:313–317

    Article  CAS  PubMed  Google Scholar 

  13. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  PubMed  Google Scholar 

  14. Park IH, Zhao R, West JA, Yabuuchi A, Huo H, Ince TA, Lerou PH, Lensch MW, Daley GQ (2008) Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451:141–146

    Article  CAS  PubMed  Google Scholar 

  15. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  CAS  PubMed  Google Scholar 

  16. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920

    Article  CAS  PubMed  Google Scholar 

  17. Chang K, Elledge SJ, Hannon GJ (2006) Lessons from nature: microRNA-based shRNA libraries. Nat Methods 3:707–714

    Article  CAS  PubMed  Google Scholar 

  18. Silva JM, Li MZ, Chang K, Ge W, Golding MC, Rickles RJ, Siolas D, Hu G, Paddison PJ, Schlabach MR, Sheth N, Bradshaw J, Burchard J, Kulkarni A, Cavet G, Sachidanandam R, McCombie WR, Cleary MA, Elledge SJ, Hannon GJ (2005) Second-generation shRNA libraries covering the mouse and human genomes. Nat Genet 37:1281–1288

    CAS  PubMed  Google Scholar 

  19. Wang J, Rao S, Chu J, Shen X, Levasseur DN, Theunissen TW, Orkin SH (2006) A protein interaction network for pluripotency of embryonic stem cells. Nature 444:364–368

    Article  CAS  PubMed  Google Scholar 

  20. Wang J, Theunissen TW, Orkin SH (2007) Site-directed, virus-free, and inducible RNAi in embryonic stem cells. Proc Natl Acad Sci U S A 104:20850–20855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lohmann F, Bieker JJ (2008) Activation of Eklf expression during hematopoiesis by Gata2 and Smad5 prior to erythroid commitment. Development 135:2071–2082

    Article  CAS  PubMed  Google Scholar 

  22. Conner DA (2001) Mouse embryo fibroblast (MEF) feeder cell preparation. Curr Protoc Mol Biol 23:22

    Google Scholar 

  23. Morita S, Kojima T, Kitamura T (2000) Plat-E: an efficient and stable system for transient packaging of retroviruses. Gene Ther 7:1063–1066

    Article  CAS  PubMed  Google Scholar 

  24. Gavrilescu LC, Van Etten RA (2007) Production of replication-defective retrovirus by transient transfection of 293T cells. J Vis Exp 10:550

    Google Scholar 

  25. Stegmeier F, Hu G, Rickles RJ, Hannon GJ, Elledge SJ (2005) A lentiviral microRNA-based system for single-copy polymerase II-regulated RNA interference in mammalian cells. Proc Natl Acad Sci U S A 102:13212–13217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kyba M, Perlingeiro RC, Daley GQ (2002) HoxB4 confers definitive lymphoid-myeloid engraftment potential on embryonic stem cell and yolk sac hematopoietic progenitors. Cell 109:29–37

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author would like to thank Dr. Stuart H. Orkin, an Investigator of Howard Hughes Medical Institute, for his support of the author’s postdoctoral training in his lab when the method was initially developed. The author’s current work is supported by the Seed Fund from the Black Family Stem Cell Institute in Mount Sinai School of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianlong Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Wang, J. (2017). Efficient Gene Knockdowns in Mouse Embryonic Stem Cells Using MicroRNA-Based shRNAs. In: Zhang, B. (eds) RNAi and Small Regulatory RNAs in Stem Cells. Methods in Molecular Biology, vol 1622. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7108-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7108-4_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7106-0

  • Online ISBN: 978-1-4939-7108-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics