Skip to main content

HIV Reservoirs in Lymph Nodes and Spleen

  • Reference work entry
  • First Online:
Encyclopedia of AIDS

Definition: The Lymphatic Reservoir

The lymphatic reservoir is constituted by subsets of the CD4+ T lymphocytes, dendritic cells, and cells of monocyte–macrophage lineage which become infected by HIV. After infection, these cells harbor transcriptionally silent but replication-competent HIV DNA, beyond the reach of host immune responses and antiretroviral therapy (ART) (Shan and Siliciano 2013). These cells are generally long-lived and maintain the capacity for viral replication throughout their life spans.

Introduction

After entry into the body, HIV rapidly spreads to regional lymph nodes and other lymphoid tissues. This early exploitation of the lymphatic system is mediated by specific host cells and defines the long-term course of HIV infection (Brenchley et al. 2004; Kramer-Hammerle et al. 2005; Moir et al. 2015). CD4+ T lymphocytes, dendritic cells, and cells from the monocyte–macrophage lineage are principal players in these events, and subsets of these cells become latent...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,099.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Angeli V, Randolph GJ. Inflammation, lymphatic function, and dendritic cell migration. Lymphat Res Biol. 2006;4:217–28.

    Article  CAS  PubMed  Google Scholar 

  • Baluk P, Fuxe J, Hashizume H, Romano T, Lashnits E, Butz S, et al. Functionally specialized junctions between endothelial cells of lymphatic vessels. J Exp Med. 2007;204:2349–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blankson JN, Persaud D, Siliciano RF. The challenge of viral reservoirs in HIV-1 infection. Annu Rev Med. 2002;53:557–93.

    Article  CAS  PubMed  Google Scholar 

  • Braun A, Worbs T, Moschovakis GL, Halle S, Hoffmann K, Bolter J, et al. Afferent lymph-derived T cells and DCs use different chemokine receptor CCR7-dependent routes for entry into the lymph node and intranodal migration. Nat Immunol. 2011;12:879–87.

    Article  CAS  PubMed  Google Scholar 

  • Brenchley JM, Schacker TW, Ruff LE, Price DA, Taylor JH, Beilman GJ, et al. CD4+ T cell depletion during all stages of HIV disease occurs predominantly in the gastrointestinal tract. J Exp Med. 2004;2004:749–59.

    Article  Google Scholar 

  • Burton GF, Keele BF, Estes JD, Thacker TC, Gartner S. Follicular dendritic cell contributions to HIV pathogenesis. Semin Immunol. 2002;14(4):275–84.

    Article  CAS  PubMed  Google Scholar 

  • Caselli E, Galvan M, Cassai E, Caruso A, Sighinolfi L, di Luca D. Human herpesvirus 8 enhances human immunodeficiency virus replication in acutely infected cells and induces reactivation in latently infected cells. Blood. 2005;106:2790–7.

    Article  CAS  PubMed  Google Scholar 

  • Chun T-W, Carruth L, Finzi D, Shen X, Digiuseppe JA, Taylor H, et al. Quantitation of latent tissue reservoirs and total body load in HIV-1 infection. Nature. 1997;387:183–8.

    Article  CAS  PubMed  Google Scholar 

  • Cunningham AL, Wilkinson J, Turville S, Pope M. Binding and uptake of HIV by dendritic cells and transfer to T lymphocytes: implications for pathogenesis. In: Belardelli GA, editor. The biology of dendritic cells and HIV infection. New York: Springer; 2007. p. 245–74.

    Google Scholar 

  • Cyster JG, Schwab SR. Sphingosine-1-phosphate and lymphocyte egress from lymphoid organs. Annu Rev Immunol. 2012;30:69–94.

    Article  CAS  PubMed  Google Scholar 

  • Del Cornò M, Conti L, Gauzzi MC, Fantuzzi L, Gessani S. HIV exploitation of DC biology to subvert the host immune response. In: Gessani S, Belardelli F, editors. The biology of dendritic cells and HIV infection. New York: Springer; 2007. p. 447–84.

    Chapter  Google Scholar 

  • Ho YC, Shan L, Hosmane NN, Wang J, Laskey SB, Rosenbloom DI, et al. Replication-competent noninduced proviruses in the latent reservoir increase barrier to HIV-1 cure. Cell. 2013;155(3):540–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamath AT, Henri S, Battye F, Tough DF, Shortman K. Developmental kinetics and lifespan of dendritic cells in mouse lymphoid organs. Blood. 2002;100:1734–41.

    CAS  PubMed  Google Scholar 

  • Keele BF, Tazi L, Gartner S, Liu Y, Burgon TB, Estes JD, et al. Characterization of the follicular dendritic cell reservoir of human immunodeficiency virus type 1. J Virol. 2008;82(11):5548–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koh L, Zakharov A, Johnston M. Integration of the subarachnoid space and lymphatics: is it time to embrace a new concept of cerebrospinal fluid absorption? Cerebrospinal Fluid Res. 2005;2:6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kramer-Hammerle S, Rothenaigner I, Wolff H, Bell JE, Brack-Werner R. Cells of the central nervous system as targets and reservoirs of the human immunodeficiency virus. Virus Res. 2005;111:194–213.

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Abbas W, Herbein G. HIV-1 latency in monocytes/macrophages. Viruses. 2014;6(4):1837–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Douce V, Herbein G, Rohr O, Schwartz C. Molecular mechanisms of HIV-1 persistence in the monocyte-macrophage lineage. Retrovirology. 2010;7:32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Levy JA. Discovery, structure, heterogeneity, and origins of HIV. In: Levy JA, editor. HIV and the pathogenesis of AIDS. 3rd ed. Washington, DC: ASM Press; 2007. p. 1–26.

    Chapter  Google Scholar 

  • Mackay CR, Marston WL, Dudler L. Naive and memory T cells show distinct pathways of lymphocyte recirculation. J Exp Med. 1990;171:801–17.

    Article  CAS  PubMed  Google Scholar 

  • Miranda RN, Khoury JD, Medeiros LJ. Normal lymph node architecture and function. In: Miranda RN, Khoury JD, Medeiros LJ, editors. Atlas of lymph node pathology. New York: Springer; 2013. p. 3–7.

    Chapter  Google Scholar 

  • Moir S, Connors M, Fauci AS. The immunology of human immunodeficiency virus infection. In: Bennett JE, Dolin R, Blasé MJ, editors. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. 8th ed. Philadelphia: Elsevier; 2015. p. 1526–40.

    Google Scholar 

  • Moll H. Dendritic cells and host resistance to infection. Cell Microbiol. 2003;5:493–500.

    Article  CAS  PubMed  Google Scholar 

  • Platt AM, Randolph GJ. Dendritic cell migration through the lymphatic vasculature to lymph nodes. Adv Immunol. 2013a;120:51–68.

    Article  CAS  PubMed  Google Scholar 

  • Platt AM, Randolph GJ. Cellular composition of lymph. In: Santambrogio L, editor. Immunology of the lymphatic system. New York: Springer; 2013b. p. 53–64.

    Chapter  Google Scholar 

  • Redel L, Le Douce V, Cherrier T, Marban C, Janossy A, Aunis D, et al. HIV-1 regulation of latency in the monocyte-macrophage lineage and in CD4+ T lymphocytes. J Leukoc Biol. 2010;87:575–88.

    Article  CAS  PubMed  Google Scholar 

  • Sahu GK. Potential implication of residual viremia in patients on effective antiretroviral therapy. AIDS Res Hum Retrovir. 2015;31(1):25–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt B, Kittan NA, Haupt S, Levy JA. Innate cellular immune responses in HIV infection. In: Gessani S, Belardelli F, editors. The biology of dendritic cells and HIV infection. New York: Springer; 2007. p. 297–332.

    Chapter  Google Scholar 

  • Shan L, Siliciano RF. From reactivation of latent HIV-1 to elimination of the latent reservoir: the presence of multiple barriers to viral eradication. Bioessays. 2013;35(6):544–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siliciano JD, Kajdas J, Finzi D, Quinn TC, Chadwick K, Margolick JB, et al. Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4+ T cells. Nat Med. 2003;9(6):727–8.

    Article  CAS  PubMed  Google Scholar 

  • Smith JB, McIntosh GH, Morris B. The traffic of cells through tissues: a study of peripheral lymph in sheep. J Anat. 1970;107:87–100.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith BA, Gartner S, Liu Y, Perelson AS, Stilianakis NI, Keele BF, Kerkering TM, Ferreira-Gonzalez A, Szakal AK, Tew JG, Burton GF. Persistence of infectious HIV on follicular dendritic cells. J Immunol. 2001;166:690–6.

    Article  CAS  PubMed  Google Scholar 

  • Soumelis V, Liu Y-J, Gilliet M. Dendritic cell biology: subset heterogeneity and functional plasticity. In: Belardelli GA, editor. The biology of dendritic cells and HIV infection. New York: Springer; 2007. p. 3–43.

    Chapter  Google Scholar 

  • Szabo G, Miller CL, Kodys K. Antigen presentation by the CD4 positive monocyte subset. J Leukoc Biol. 1990;47(2):111–20.

    Article  CAS  PubMed  Google Scholar 

  • Tenner-Racz K, Racz P. Follicular dendritic cells initiate and maintain infection of the germinal centers by human immunodeficiency virus. Curr Top Microbiol Immunol. 1995;201:141–59.

    CAS  PubMed  Google Scholar 

  • Vicenzi E, Alfano M, Ghezzi S, Poli G. Immunopathogenesis of HIV Infection. In: Belardelli GA, editor. The biology of dendritic cells and HIV infection. New York: Springer; 2007. p. 245–74.

    Chapter  Google Scholar 

  • Wagshul ME, Johnston M. The brain and the lymphatic system. In: Santambrogio L, editor. Immunology of the lymphatic system. New York: Springer; 2013. p. 53–64.

    Google Scholar 

  • Weller RO, Engelhardt B, Phillips MJ. Lymphocyte targeting of the central nervous system: a review of afferent and efferent CNS-immune pathways. Brain Pathol. 2006;6(3):275–88.

    Article  Google Scholar 

  • Wightman F, Solomon A, Khoury G, Green JA, Gray L, Gorry PR, et al. Both CD31(+) and CD31− naive CD4(+) T cells are persistent HIV type 1-infected reservoirs in individuals receiving antiretroviral therapy. J Infect Dis. 2010;202(11):1738–48.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean G. Kelly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kelly, S.G., Taiwo, B.O. (2018). HIV Reservoirs in Lymph Nodes and Spleen. In: Hope, T.J., Richman, D.D., Stevenson, M. (eds) Encyclopedia of AIDS. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7101-5_431

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7101-5_431

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-7100-8

  • Online ISBN: 978-1-4939-7101-5

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics