Skip to main content

Lentiviral Reprogramming of A-T Patient Fibroblasts to Induced Pluripotent Stem Cells

  • Protocol
  • First Online:
ATM Kinase

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1599))

Abstract

Reprogramming of cells enables generation of pluripotent stem cells and resulting progeny through directed differentiation, making this technology an invaluable tool for the study of human development and disease. Reprogramming occurs with a wide range of efficiency, a culmination of intrinsic and extrinsic factors including the tissue of origin, the passage number and culture history of the target cells. Another major factor affecting reprogramming is the methodology used and the quality of the reprogramming process itself, including for conventional viral-based approaches viral titer and subsequent viral transduction efficiency, including downstream transgene insertion and stoichiometry. Genetic background is an important parameter affecting the efficiency of the reprogramming process with reports that cells from individuals harboring specific mutations are more difficult to reprogram than control counterparts.

Ataxia-Telangiectasia (A-T) fibroblasts underwent reprogramming at reduced efficiency in contrast to their controls. To optimize reprogramming of fibroblasts from patients with A-T, we examined the response of A-T cells to various cell culture conditions after lentiviral transduction with reprogramming factors Oc4/Sox2 (pSIN4-EF2-O2S) and Klf4/c-Myc (pSIN4-CMV-K2M). Parameters included media type (KSR or serum-containing DMEM), treatment with a p53 inhibitor (small-molecule cyclic pifithrin-α), and either a low or high concentration of bFGF. Post-transduction, equivalent numbers of cells from heterozygote and homozygote patients were plated and assessed at regular intervals for survival and proliferation. Our findings indicate that A-T cells responded favorably to the addition of FCS and gradual weaning away from their native media into KSR-containing stem cell media that produced suitable conditions for their reprogramming. We examined a range of properties to identify and isolate good quality iPSCs including the expression status of important stem cell transcription factors/surface proteins, methylation levels at stem cell associated regulatory loci, persistence of transgenes, karyotype status, and teratoma-forming ability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Eggan K (2013) Picking the lock on pluripotency. N Engl J Med 369(22):2150–2151

    Article  CAS  PubMed  Google Scholar 

  2. Sommer CA et al (2009) Induced pluripotent stem cell generation using a single lentiviral stem cell cassette. Stem Cells 27(3):543–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Plath K, Lowry WE (2011) Progress in understanding reprogramming to the induced pluripotent state. Nat Rev Genet 12(4):253–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lavin MF (2013) The appropriateness of the mouse model for ataxia-telangiectasia: neurological defects but no neurodegeneration. DNA Repair (Amst) 12(8):612–619

    Article  CAS  Google Scholar 

  5. Hawley RS, Friend SH (1996) Strange bedfellows in even stranger places: the role of ATM in meiotic cells, lymphocytes, tumors, and its functional links to p53. Genes Dev 10(19):2383–2388

    Article  CAS  PubMed  Google Scholar 

  6. Wood LM et al (2011) A novel role for ATM in regulating proteasome-mediated protein degradation through suppression of the ISG15 conjugation pathway. PLoS One 6(1):e16422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ambrose M, Goldstine JV, Gatti RA (2007) Intrinsic mitochondrial dysfunction in ATM-deficient lymphoblastoid cells. Hum Mol Genet 16(18):2154–2164

    Article  CAS  PubMed  Google Scholar 

  8. Bar RS et al (1978) Extreme insulin resistance in ataxia telangiectasia: defect in affinity of insulin receptors. N Engl J Med 298(21):1164–1171

    Article  CAS  PubMed  Google Scholar 

  9. Li J et al (2009) Cytoplasmic ATM in neurons modulates synaptic function. Curr Biol 19(24):2091–2096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lim DS et al (1998) ATM binds to beta-adaptin in cytoplasmic vesicles. Proc Natl Acad Sci U S A 95(17):10146–10151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cosentino C, Grieco D, Costanzo V (2011) ATM activates the pentose phosphate pathway promoting anti-oxidant defence and DNA repair. EMBO J 30(3):546–555

    Article  CAS  PubMed  Google Scholar 

  12. Li J et al (2012) Nuclear accumulation of HDAC4 in ATM deficiency promotes neurodegeneration in ataxia telangiectasia. Nat Med 18(5):783–790

    Article  PubMed  PubMed Central  Google Scholar 

  13. Guo Z, Deshpande R, Paull TT (2010) ATM activation in the presence of oxidative stress. Cell Cycle 9(24):4805–4811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Guo Z et al (2011) ATM activation by oxidative stress. Science 330(6003):517–521

    Article  Google Scholar 

  15. Oka A, Takashima S (1998) Expression of the ataxia-telangiectasia gene (ATM) product in human cerebellar neurons during development. Neurosci Lett 252(3):195–198

    Article  CAS  PubMed  Google Scholar 

  16. Barlow C et al (2000) ATM is a cytoplasmic protein in mouse brain required to prevent lysosomal accumulation. Proc Natl Acad Sci U S A 97(2):871–876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Song H, Chung SK, Xu Y (2010) Modeling disease in human ESCs using an efficient BAC-based homologous recombination system. Cell Stem Cell 6(1):80–89

    Article  CAS  PubMed  Google Scholar 

  18. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  CAS  PubMed  Google Scholar 

  19. Marion RM et al (2009) A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity. Nature 460(7259):1149–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kawamura T et al (2009) Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature 460(7259):1140–1144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Polo JM et al (2012) A molecular roadmap of reprogramming somatic cells into iPS cells. Cell 151(7):1617–1632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schubert R, Reichenbach J, Zielen S (2005) Growth factor deficiency in patients with ataxia telangiectasia. Clin Exp Immunol 140(3):517–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nayler S et al (2012) Induced pluripotent stem cells from ataxia-telangiectasia recapitulate the cellular phenotype. Stem Cells Transl Med 1(7):523–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lin L et al (2015) Spontaneous ATM gene reversion in A-T iPSC to produce an isogenic cell line. Stem Cell Rep 5(6):1097–1108

    Article  CAS  Google Scholar 

  25. Fukawatase Y et al (2014) Ataxia telangiectasia derived iPS cells show preserved x-ray sensitivity and decreased chromosomal instability. Sci Rep 4:5421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lee P et al (2013) SMRT compounds abrogate cellular phenotypes of ataxia telangiectasia in neural derivatives of patient-specific hiPSCs. Nat Commun 4:1824

    Article  PubMed  Google Scholar 

  27. Maherali N et al (2007) Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 1(1):55–70

    Article  CAS  PubMed  Google Scholar 

  28. Nishino K et al (2010) DNA methylation dynamics in human induced pluripotent stem cells over time. PLoS Genet 7(5):e1002085

    Article  Google Scholar 

  29. Zhou W et al (2013) Higher methylation in genomic DNA indicates incomplete reprogramming in induced pluripotent stem cells. Cell Reprogram 15(1):92–99

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kim K et al (2010) Epigenetic memory in induced pluripotent stem cells. Nature 467(7313):285–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Reich M et al (2006) GenePattern 2.0. Nat Genet 38(5):500–501

    Google Scholar 

  32. Chan EM et al (2009) Live cell imaging distinguishes bona fide human iPS cells from partially reprogrammed cells. Nat Biotechnol 27(11):1033–1037

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernst Wolvetang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Nayler, S., Kozlov, S.V., Lavin, M.F., Wolvetang, E. (2017). Lentiviral Reprogramming of A-T Patient Fibroblasts to Induced Pluripotent Stem Cells. In: Kozlov, S. (eds) ATM Kinase. Methods in Molecular Biology, vol 1599. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6955-5_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6955-5_29

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6953-1

  • Online ISBN: 978-1-4939-6955-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics