Skip to main content

Structural Stringency of Cholesterol for Membrane Protein Function Utilizing Stereoisomers as Novel Tools: A Review

  • Protocol
  • First Online:
Cholesterol Homeostasis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1583))

Abstract

Cholesterol is an important lipid in the context of membrane protein function. The function of a number of membrane proteins, including G protein-coupled receptors (GPCRs) and ion channels, has been shown to be dependent on membrane cholesterol. However, the molecular mechanism underlying such regulation is still being explored. In some cases, specific interaction between cholesterol and the protein has been implicated. In other cases, the effect of cholesterol on the membrane properties has been attributed for the regulation of protein function. In this article, we have provided an overview of experimental approaches that are useful for determining the degree of structural stringency of cholesterol for membrane protein function. In the process, we have highlighted the role of immediate precursors in cholesterol biosynthetic pathway in the function of membrane proteins. Special emphasis has been given to the application of stereoisomers of cholesterol in deciphering the structural stringency required for regulation of membrane protein function. A comprehensive examination of these processes would help in understanding the molecular basis of cholesterol regulation of membrane proteins in subtle details.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee AG (2011) Lipid–protein interactions. Biochem Soc Trans 39:761–766

    Article  CAS  PubMed  Google Scholar 

  2. Burger K, Gimpl G, Fahrenholz F (2000) Regulation of receptor function by cholesterol. Cell Mol Life Sci 57:1577–1592

    Article  CAS  PubMed  Google Scholar 

  3. Pucadyil TJ, Chattopadhyay A (2006) Role of cholesterol in the function and organization of G-protein coupled receptors. Prog Lipid Res 45:295–333

    Article  CAS  PubMed  Google Scholar 

  4. Fantini J, Barrantes FJ (2009) Sphingolipid/cholesterol regulation of neurotransmitter receptor conformation and function. Biochim Biophys Acta 1788:2345–2361

    Article  CAS  PubMed  Google Scholar 

  5. Paila YD, Chattopadhyay A (2010) Membrane cholesterol in the function and organization of G-protein coupled receptors. Subcell Biochem 51:439–466

    Article  CAS  PubMed  Google Scholar 

  6. Oates J, Watts A (2011) Uncovering the intimate relationship between lipids, cholesterol and GPCR activation. Curr Opin Struct Biol 21:802–807

    Article  CAS  PubMed  Google Scholar 

  7. Jafurulla M, Chattopadhyay A (2013) Membrane lipids in the function of serotonin and adrenergic receptors. Curr Med Chem 20:47–55

    Article  CAS  PubMed  Google Scholar 

  8. Levitan I, Singh DK, Rosenhouse-Dantsker A (2014) Cholesterol binding to ion channels. Front Physiol 5:65

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chattopadhyay A (2014) GPCRs: lipid-dependent membrane receptors that act as drug targets. Adv Biol 2014:143023

    Article  CAS  Google Scholar 

  10. Paila YD, Chattopadhyay A (2009) The function of G-protein coupled receptors and membrane cholesterol: specific or general interaction? Glycoconj J 26:711–720

    Article  CAS  PubMed  Google Scholar 

  11. Lee AG (2011) Biological membranes: the importance of molecular detail. Trends Biochem Sci 36:493–500

    Article  CAS  PubMed  Google Scholar 

  12. Paila YD, Tiwari S, Chattopadhyay A (2009) Are specific nonannular cholesterol binding sites present in G-protein coupled receptors? Biochim Biophys Acta 1788:295–302

    Article  CAS  PubMed  Google Scholar 

  13. Simmonds AC, East JM, Jones OT, Rooney EK, McWhirter J, Lee AG (1982) Annular and non-annular binding sites on the (Ca2+ + Mg2+)-ATPase. Biochim Biophys Acta 693:398–406

    Article  CAS  PubMed  Google Scholar 

  14. Jones OT, McNamee MG (1988) Annular and nonannular binding sites for cholesterol associated with the nicotinic acetylcholine receptor. Biochemistry 27:2364–2374

    Article  CAS  PubMed  Google Scholar 

  15. Pucadyil TJ, Chattopadhyay A (2004) Cholesterol modulates ligand binding and G-protein coupling to serotonin1A receptors from bovine hippocampus. Biochim Biophys Acta 1663:188–200

    Article  CAS  PubMed  Google Scholar 

  16. Saxena R, Chattopadhyay A (2012) Membrane cholesterol stabilizes the human serotonin1A receptor. Biochim Biophys Acta 1818:2936–2942

    Article  CAS  PubMed  Google Scholar 

  17. Patra SM, Chakraborty S, Shahane G, Prasanna X, Sengupta D, Maiti PK, Chattopadhyay A (2015) Differential dynamics of the serotonin1A receptor in membrane bilayers of varying cholesterol content revealed by all atom molecular dynamics simulation. Mol Membr Biol 32:127–137

    Article  CAS  PubMed  Google Scholar 

  18. Yao Z, Kobilka BK (2005) Using synthetic lipids to stabilize purified β2 adrenoceptor in detergent micelles. Anal Biochem 343:344–346

    Article  CAS  PubMed  Google Scholar 

  19. Zocher M, Zhang C, Rasmussen SGF, Kobilka BK, Müller DJ (2012) Cholesterol increases kinetic, energetic, and mechanical stability of the human β2-adrenergic receptor. Proc Natl Acad Sci U S A 109:E3463–E3472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Paila YD, Jindal E, Goswami SK, Chattopadhyay A (2011) Cholesterol depletion enhances adrenergic signaling in cardiac myocytes. Biochim Biophys Acta 1808:461–465

    Article  CAS  PubMed  Google Scholar 

  21. Harikumar KG, Puri V, Singh RD, Hanada K, Pagano RE, Miller LJ (2005) Differential effects of modification of membrane cholesterol and sphingolipids on the conformation, function, and trafficking of the G protein-coupled cholecystokinin receptor. J Biol Chem 280:2176–2185

    Article  CAS  PubMed  Google Scholar 

  22. Sjögren B, Hamblin MW, Svenningsson P (2006) Cholesterol depletion reduces serotonin binding and signaling via human 5-HT7(a) receptors. Eur J Pharmacol 552:1–10

    Article  PubMed  CAS  Google Scholar 

  23. Gimpl G, Burger K, Fahrenholz F (1997) Cholesterol as modulator of receptor function. Biochemistry 36:10959–10974

    Article  CAS  PubMed  Google Scholar 

  24. Gimpl G, Fahrenholz F (2002) Cholesterol as stabilizer of the oxytocin receptor. Biochim Biophys Acta 1564:384–392

    Article  CAS  PubMed  Google Scholar 

  25. Oddi S, Dainese E, Fezza F, Lanuti M, Barcaroli D, De Laurenzi V, Centonze D, Maccarrone M (2011) Functional characterization of putative cholesterol binding sequence (CRAC) in human type-1 cannabinoid receptor. J Neurochem 116:858–865

    Article  CAS  PubMed  Google Scholar 

  26. Criado M, Eibl H, Barrantes FJ (1982) Effects of lipids on acetylcholine receptor. Essential need of cholesterol for maintenance of agonist-induced state transitions in lipid vesicles. Biochemistry 21:3622–3629

    Article  CAS  PubMed  Google Scholar 

  27. Fong TM, McNamee MG (1986) Correlation between acetylcholine receptor function and structural properties of membranes. Biochemistry 25:830–840

    Article  CAS  PubMed  Google Scholar 

  28. Santiago J, Guzmán GR, Rojas LV, Marti R, Asmar-Rovira GA, Santana LF, McNamee M, Lasalde-Dominicci JA (2001) Probing the effects of membrane cholesterol in the Torpedo californica acetylcholine receptor and the novel lipid-exposed mutation αC418W in Xenopus oocytes. J Biol Chem 276:46523–46532

    Article  CAS  PubMed  Google Scholar 

  29. Borroni V, Baier CJ, Lang T, Bonini I, White MM, Garbus I, Barrantes FJ (2007) Cholesterol depletion activates rapid internalization of submicron-sized acetylcholine receptor domains at the cell membrane. Mol Membr Biol 24:1–15

    Article  CAS  PubMed  Google Scholar 

  30. Barrantes FJ (2007) Cholesterol effects on nicotinic acetylcholine receptor. J Neurochem 103(Supp 1):72–80

    Article  CAS  PubMed  Google Scholar 

  31. Borroni V, Barrantes FJ (2011) Cholesterol modulates the rate and mechanism of acetylcholine receptor internalization. J Biol Chem 286:17122–17132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sooksawate T, Simmonds MA (1998) Increased membrane cholesterol reduces the potentiation of GABAA currents by neurosteroids in dissociated hippocampal neurones. Neuropharmacology 37:1103–1110

    Article  CAS  PubMed  Google Scholar 

  33. Sooksawate T, Simmonds MA (2001) Influence of membrane cholesterol on modulation of the GABAA receptor by neuroactive steroids and other potentiators. Br J Pharmacol 134:1303–1311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sooksawate T, Simmonds MA (2001) Effects of membrane cholesterol on the sensitivity of the GABAA receptor to GABA in acutely dissociated rat hippocampal neurones. Neuropharmacology 40:178–184

    Article  CAS  PubMed  Google Scholar 

  35. Nothdurfter C, Tanasic S, Di Benedetto B, Uhr M, Wagner E-M, Gilling KE, Parsons CG, Rein T, Holsboer F, Rupprecht R, Rammes G (2013) Lipid raft integrity affects GABAA receptor, but not NMDA receptor modulation by psychopharmacological compounds. Int J Neuropsychopharmacol 16:1361–1371

    Article  CAS  PubMed  Google Scholar 

  36. Rosenhouse-Dantsker A, Levitan I (2012) Insights into structural determinants of cholesterol sensitivity of Kir channels. In: Levitan I, Barrantes F (eds) Cholesterol regulation of ion channels and receptors. John Wiley, NJ, pp 47–67

    Google Scholar 

  37. Korinek M, Vyklicky V, Borovska J, Lichnerova K, Kaniakova M, Krausova B, Krusek J, Balik A, Smejkalova T, Horak M, Vyklicky L (2015) Cholesterol modulates open probability and desensitization of NMDA receptors. J Physiol 593:2279–2293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Banerjee P, Joo JB, Buse JT, Dawson G (1995) Differential solubilization of lipids along with membrane proteins by different classes of detergents. Chem Phys Lipids 77:65–78

    Article  CAS  PubMed  Google Scholar 

  39. Chattopadhyay A, Jafurulla M, Kalipatnapu S, Pucadyil TJ, Harikumar KG (2005) Role of cholesterol in ligand binding and G-protein coupling of serotonin1A receptors solubilized from bovine hippocampus. Biochem Biophys Res Commun 327:1036–1041

    Article  CAS  PubMed  Google Scholar 

  40. Gimpl G (2010) Cholesterol-protein interaction: methods and cholesterol reporter molecules. Subcell Biochem 51:1–45

    Article  CAS  PubMed  Google Scholar 

  41. Fantini J, Barrantes FJ (2013) How cholesterol interacts with membrane proteins: an exploration of cholesterol-binding sites including CRAC, CARC, and tilted domains. Front Physiol 4:31

    PubMed  PubMed Central  Google Scholar 

  42. Li H, Papadopoulos V (1998) Peripheral-type benzodiazepine receptor function in cholesterol transport. Identification of a putative cholesterol recognition/interaction amino acid sequence and consensus pattern. Endocrinology 139:4991–4997

    CAS  Google Scholar 

  43. Epand RM (2006) Cholesterol and the interaction of proteins with membrane domains. Prog Lipid Res 45:279–294

    Article  CAS  PubMed  Google Scholar 

  44. Jafurulla M, Tiwari S, Chattopadhyay A (2011) Identification of cholesterol recognition amino acid consensus (CRAC) motif in G-protein coupled receptors. Biochem Biophys Res Commun 404:569–573

    Article  CAS  PubMed  Google Scholar 

  45. Hanson MA, Cherezov V, Griffith MT, Roth CB, Jaakola V-P, Chien EYT, Velasquez J, Kuhn P, Stevens RC (2008) A specific cholesterol binding site is established by the 2.8 Å structure of the human β2-adrenergic receptor. Structure 16:897–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Brown MS, Goldstein JL (1999) A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood. Proc Natl Acad Sci U S A 96:11041–11048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kuwabara PE, Labouesse M (2002) The sterol-sensing domain: multiple families, a unique role? Trends Genet 18:193–201

    Article  CAS  PubMed  Google Scholar 

  48. Baier CJ, Fantini J, Barrantes FJ (2011) Disclosure of cholesterol recognition motifs in transmembrane domains of the human nicotinic acetylcholine receptor. Sci Rep 1:69

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Fantini J, Di Scala C, Evans LS, Williamson PTF, Barrantes FJ (2016) A mirror code for protein-cholesterol interactions in the two leaflets of biological membranes. Sci Rep 6:21907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jamin N, Neumann J-M, Ostuni MA, Vu TKN, Yao Z-X, Murail S, Robert J-C, Giatzakis C, Papadopoulos V, Lacapère J-J (2005) Characterization of the cholesterol recognition amino acid consensus sequence of the peripheral-type benzodiazepine receptor. Mol Endocrinol 19:588–594

    Article  CAS  PubMed  Google Scholar 

  51. Epand RF, Thomas A, Brasseur R, Vishwanathan SA, Hunter E, Epand RM (2006) Juxtamembrane protein segments that contribute to recruitment of cholesterol into domains. Biochemistry 45:6105–6114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Härtel S, Diehl HA, Ojeda F (1998) Methyl-β-cyclodextrins and liposomes as water-soluble carriers for cholesterol incorporation into membranes and its evaluation by a microenzymatic fluorescence assay and membrane fluidity-sensitive dyes. Anal Biochem 258:277–284

    Article  PubMed  Google Scholar 

  53. Zidovetzki R, Levitan I (2007) Use of cyclodextrins to manipulate plasma membrane cholesterol content: evidence, misconceptions and control strategies. Biochim Biophys Acta 1768:1311–1324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gimpl G, Gehrig-Burger K (2011) Probes for studying cholesterol binding and cell biology. Steroids 76:216–231

    Article  CAS  PubMed  Google Scholar 

  55. Chattopadhyay A, Jafurulla M (2012) Role of membrane cholesterol in leishmanial infection. Adv Exp Med Biol 749:201–213

    Article  CAS  PubMed  Google Scholar 

  56. López CA, de Vries AH, Marrink SJ (2013) Computational microscopy of cyclodextrin mediated cholesterol extraction from lipid model membranes. Sci Rep 3:2071

    Article  PubMed  PubMed Central  Google Scholar 

  57. Breslow R, Zhang B (1996) Cholesterol recognition and binding by cyclodextrin dimers. J Am Chem Soc 118:8495–8496

    Article  CAS  Google Scholar 

  58. Tsamaloukas A, Szadkowska H, Slotte JP, Heerklotz H (2005) Interactions of cholesterol with lipid membranes and cyclodextrin characterized by calorimetry. Biophys J 89:1109–1119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Elias PM, Goerke J, Friend DS, Brown BE (1978) Freeze-fracture identification of sterol-digitonin complexes in cell and liposome membranes. J Cell Biol 78:577–596

    Article  CAS  PubMed  Google Scholar 

  60. Nishikawa M, Nojima S, Akiyama T, Sankawa U, Inoue K (1984) Interaction of digitonin and its analogs with membrane cholesterol. J Biochem 96:1231–1239

    Article  CAS  PubMed  Google Scholar 

  61. Paila YD, Pucadyil TJ, Chattopadhyay A (2005) The cholesterol-complexing agent digitonin modulates ligand binding of the bovine hippocampal serotonin1A receptor. Mol Membr Biol 22:241–249

    Article  CAS  PubMed  Google Scholar 

  62. Holz RW (1974) The effects of the polyene antibiotics nystatin and amphotericin B on thin lipid membranes. Ann N Y Acad Sci 235:469–479

    Article  CAS  PubMed  Google Scholar 

  63. Bolard J (1986) How do the polyene macrolide antibiotics affect the cellular membrane properties? Biochim Biophys Acta 864:257–304

    Article  CAS  PubMed  Google Scholar 

  64. Coutinho A, Prieto M (2003) Cooperative partition model of nystatin interaction with phospholipid vesicles. Biophys J 84:3061–3078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Pucadyil TJ, Shrivastava S, Chattopadhyay A (2004) The sterol-binding antibiotic nystatin differentially modulates ligand binding of the bovine hippocampal serotonin1A receptor. Biochem Biophys Res Commun 320:557–562

    Article  CAS  PubMed  Google Scholar 

  66. Readio JD, Bittman R (1982) Equilibrium binding of amphotericin B and its methyl ester and borate complex to sterols. Biochim Biophys Acta 685:219–224

    Article  CAS  PubMed  Google Scholar 

  67. Mouri R, Konoki K, Matsumori N, Oishi T, Murata M (2008) Complex formation of amphotericin B in sterol-containing membranes as evidenced by surface plasmon resonance. Biochemistry 47:7807–7815

    Article  CAS  PubMed  Google Scholar 

  68. Paila YD, Saha B, Chattopadhyay A (2010) Amphotericin B inhibits entry of Leishmania donovani into primary macrophages. Biochem Biophys Res Commun 399:429–433

    Article  CAS  PubMed  Google Scholar 

  69. Chattopadhyay A, Jafurulla M (2011) A novel mechanism for an old drug: amphotericin B in the treatment of visceral leishmaniasis. Biochem Biophys Res Commun 416:7–12

    Article  CAS  PubMed  Google Scholar 

  70. Kamiński DM (2014) Recent progress in the study of the interactions of amphotericin B with cholesterol and ergosterol in lipid environments. Eur Biophys J 43:453–467

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Istvan ES, Deisenhofer J (2001) Structural mechanism for statin inhibition of HMG-CoA reductase. Science 292:1160–1164

    Article  CAS  PubMed  Google Scholar 

  72. Shrivastava S, Pucadyil TJ, Paila YD, Ganguly S, Chattopadhyay A (2010) Chronic cholesterol depletion using statin impairs the function and dynamics of human serotonin1A receptors. Biochemistry 49:5426–5435

    Article  CAS  PubMed  Google Scholar 

  73. Singh P, Saxena R, Srinivas G, Pande G, Chattopadhyay A (2013) Cholesterol biosynthesis and homeostasis in regulation of the cell cycle. PLoS One 8:e58833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kandutsch AA, Russell AE (1960) Preputial gland tumor sterols: III A metabolic pathway from lanosterol to cholesterol. J Biol Chem 235:2256–2261

    CAS  PubMed  Google Scholar 

  75. Smith DW, Lemli L, Opitz JM (1964) A newly recognized syndrome of multiple congenital anomalies. J Pediatr 64:210–217

    Article  CAS  PubMed  Google Scholar 

  76. Waterham HR, Wanders RJA (2000) Biochemical and genetic aspects of 7-dehydrocholesterol reductase and Smith-Lemli-Opitz syndrome. Biochim Biophys Acta 1529:340–356

    Article  CAS  PubMed  Google Scholar 

  77. Paila YD, Murty MRVS, Vairamani M, Chattopadhyay A (2008) Signaling by the human serotonin1A receptor is impaired in cellular model of Smith-Lemli-Opitz Syndrome. Biochim Biophys Acta 1778:1508–1516

    Article  CAS  PubMed  Google Scholar 

  78. Porter FD, Herman GE (2011) Malformation syndromes caused by disorders of cholesterol synthesis. J Lipid Res 52:6–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kanungo S, Soares N, He M, Steiner RD (2013) Sterol metabolism disorders and neurodevelopment-an update. Dev Disabil Res Rev 17:197–210

    Article  PubMed  Google Scholar 

  80. Bloch KE (1983) Sterol structure and membrane function. CRC Crit Rev Biochem 14:47–92

    Article  CAS  PubMed  Google Scholar 

  81. Clayton P, Mills K, Keeling J, FitzPatrick D (1996) Desmosterolosis: a new inborn error of cholesterol biosynthesis. Lancet 348:404

    Article  CAS  PubMed  Google Scholar 

  82. FitzPatrick DR, Keeling JW, Evans MJ, Kan AE, Bell JE, Porteous MEM, Mills K, Winter RM, Clayton PT (1998) Clinical phenotype of desmosterolosis. Am J Med Genet 75:145–152

    Article  CAS  PubMed  Google Scholar 

  83. Waterham HR, Koster J, Romeijn GJ, Hennekam RCM, Vreken P, Andersson HC, FitzPatrick DR, Kelley RI, Wanders RJA (2001) Mutations in the 3β-hydroxysterol Δ24-reductase gene cause desmosterolosis, an autosomal recessive disorder of cholesterol biosynthesis. Am J Hum Genet 69:685–694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Singh P, Jafurulla M, Paila YD, Chattopadhyay A (2011) Desmosterol replaces cholesterol for ligand binding function of the serotonin1A receptor in solubilized hippocampal membranes: support for nonannular binding sites for cholesterol? Biochim Biophys Acta 1808:2428–2434

    Article  CAS  PubMed  Google Scholar 

  85. Roux C, Wolf C, Mulliez N, Gaoua W, Cormier V, Chevy F, Citadelle D (2000) Role of cholesterol in embryonic development. Am J Clin Nutr 71(5 Suppl):1270S–1279S

    CAS  PubMed  Google Scholar 

  86. Sampson NS, Vrielink A (2003) Cholesterol oxidases: a study of nature’s approach to protein design. Acc Chem Res 36:713–722

    Article  CAS  PubMed  Google Scholar 

  87. Pucadyil TJ, Shrivastava S, Chattopadhyay A (2005) Membrane cholesterol oxidation inhibits ligand binding function of hippocampal serotonin1A receptors. Biochem Biophys Res Commun 331:422–427

    Article  CAS  PubMed  Google Scholar 

  88. Kalipatnapu S, Chattopadhyay A (2005) Membrane protein solubilization: recent advances and challenges in solubilization of serotonin1A receptors. IUBMB Life 57:505–512

    Article  CAS  PubMed  Google Scholar 

  89. Chattopadhyay A, Rao BD, Jafurulla M (2015) Solubilization of G protein-coupled receptors: a convenient strategy to explore lipid-receptor interaction. Methods Enzymol 557:117–134

    Article  CAS  PubMed  Google Scholar 

  90. Jones OT, Eubanks JH, Earnest JP, McNamee MG (1988) A minimum number of lipids are required to support the functional properties of the nicotinic acetylcholine receptor. Biochemistry 27:3733–3742

    Article  CAS  PubMed  Google Scholar 

  91. Kirilovsky J, Schramm M (1983) Delipidation of a β-adrenergic receptor preparation and reconstitution by specific lipids. J Biol Chem 258:6841–6849

    CAS  PubMed  Google Scholar 

  92. Pucadyil TJ, Kalipatnapu S, Chattopadhyay A (2005) The serotonin1A receptor: a representative member of the serotonin receptor family. Cell Mol Neurobiol 25:553–580

    Article  CAS  PubMed  Google Scholar 

  93. Kalipatnapu S, Chattopadhyay A (2007) Membrane organization and function of the serotonin1A receptor. Cell Mol Neurobiol 27:1097–1116

    Article  CAS  PubMed  Google Scholar 

  94. Singh P, Paila YD, Chattopadhyay A (2007) Differential effects of cholesterol and 7-dehydrocholesterol on the ligand binding activity of the hippocampal serotonin1A receptors: implications in SLOS. Biochem Biophys Res Commun 358:495–499

    Article  CAS  PubMed  Google Scholar 

  95. Chattopadhyay A, Paila YD, Jafurulla M, Chaudhuri A, Singh P, Murty MRVS, Vairamani M (2007) Differential effects of cholesterol and 7- dehydrocholesterol on ligand binding of solubilized hippocampal serotonin1A receptors: implications in SLOS. Biochem Biophys Res Commun 363:800–805

    Article  CAS  PubMed  Google Scholar 

  96. Singh DK, Rosenhouse-Dantsker A, Nichols CG, Enkvetchakul D, Levitan I (2009) Direct regulation of prokaryotic Kir channel by cholesterol. J Biol Chem 284:30727–30736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Westover EJ, Covey DF (2004) The enantiomer of cholesterol. J Membr Biol 202:61–72

    Article  CAS  PubMed  Google Scholar 

  98. Covey DF (2009) ent-Steroids: novel tools for studies of signaling pathways. Steroids 74:577–585

    Article  CAS  PubMed  Google Scholar 

  99. Bandari S, Chakraborty H, Covey DF, Chattopadhyay A (2014) Membrane dipole potential is sensitive to cholesterol stereospecificity: implications for receptor function. Chem Phys Lipids 184:25–29

    Article  CAS  PubMed  Google Scholar 

  100. Xu F, Rychnovsky SD, Belani JD, Hobbs HH, Cohen JC, Rawson RB (2005) Dual roles for cholesterol in mammalian cells. Proc Natl Acad Sci U S A 102:14551–14556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Mickus DE, Levitt DG, Rychnovsky SD (1992) Enantiomeric cholesterol as a probe of ion-channel structure. J Am Chem Soc 114:359–360

    Article  CAS  Google Scholar 

  102. D’Avanzo N, Hyrc K, Enkvetchakul D, Covey DF, Nichols CG (2011) Enantioselective protein-sterol interactions mediate regulation of both prokaryotic and eukaryotic inward rectifier K+ channels by cholesterol. PLoS One 6:e19393

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Kristiana I, Luu W, Stevenson J, Cartland S, Jessup W, Belani JD, Rychnovsky SD, Brown AJ (2012) Cholesterol through the looking glass: ability of its enantiomer also to elicit homeostatic responses. J Biol Chem 287:33897–33904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Pierce KL, Premont RT, Lefkowitz RJ (2002) Seven-transmembrane receptors. Nat Rev Mol Cell Biol 3:639–650

    Article  CAS  PubMed  Google Scholar 

  105. Rosenbaum DM, Rasmussen SGF, Kobilka BK (2009) The structure and function of G-protein-coupled receptors. Nature 459:356–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Granier S, Kobilka B (2012) A new era of GPCR structural and chemical biology. Nat Chem Biol 8:670–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Heng BC, Aubel D, Fussenegger M (2013) An overview of the diverse roles of G-protein coupled receptors (GPCRs) in the pathophysiology of various human diseases. Biotechnol Adv 31:1676–1694

    Article  CAS  PubMed  Google Scholar 

  108. Jacobson KA (2015) New paradigms in GPCR drug discovery. Biochem Pharmacol 98:541–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Tautermann CS (2014) GPCR structures in drug design, emerging opportunities with new structures. Bioorg Med Chem Lett 24:4073–4079

    Article  CAS  PubMed  Google Scholar 

  110. Jafurulla M, Rao BD, Sreedevi S, Ruysschaert J-M, Covey DF, Chattopadhyay A (2014) Stereospecific requirement of cholesterol in the function of the serotonin1A receptor. Biochim Biophys Acta 1838:158–163

    Article  CAS  PubMed  Google Scholar 

  111. Jentsch TJ, Hübner CA, Fuhrmann JC (2004) Ion channels: function unravelled by dysfunction. Nat Cell Biol 6:1039–1047

    Article  CAS  PubMed  Google Scholar 

  112. Romanenko VG, Rothblat GH, Levitan I (2002) Modulation of endothelial inward-rectifier K+ current by optical isomers of cholesterol. Biophys J 83:3211–3222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Addona GH, Sandermann H Jr, Kloczewiak MA, Miller KW (2003) Low chemical specificity of the nicotinic acetylcholine receptor sterol activation site. Biochim Biophys Acta 1609:177–182

    Article  CAS  PubMed  Google Scholar 

  114. Killian JA (1992) Gramicidin and gramicidin–lipid interactions. Biochim Biophys Acta 1113:391–425

    Article  CAS  PubMed  Google Scholar 

  115. Koeppe RE II, Andersen OS (1996) Engineering the gramicidin channel. Annu Rev Biophys Biomol Struct 25:231–258

    Article  CAS  PubMed  Google Scholar 

  116. Kelkar DA, Chattopadhyay A (2007) The gramicidin ion channel: a model membrane protein. Biochim Biophys Acta 1768:2011–2025

    Article  CAS  PubMed  Google Scholar 

  117. Brown MS, Goldstein JL (2009) Cholesterol feedback: from Schoenheimer’s bottle to Scap’s MELADL. J Lipid Res 50:S15–S27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Brown AJ, Sun L, Feramisco JD, Brown MS, Goldstein JL (2002) Cholesterol addition to ER membranes alters conformation of SCAP, the SREBP escort protein that regulates cholesterol metabolism. Mol Cell 10:237–245

    Article  CAS  PubMed  Google Scholar 

  119. Adams CM, Goldstein JL, Brown MS (2003) Cholesterol-induced conformational change in SCAP enhanced by Insig proteins and mimicked by cationic amphiphiles. Proc Natl Acad Sci U S A 100:10647–10652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Radhakrishnan A, Goldstein JL, McDonald JG, Brown MS (2008) Switch-like control of SREBP-2 transport triggered by small changes in ER cholesterol: a delicate balance. Cell Metab 8:512–521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Luker GD, Pica CM, Kumar AS, Covey DF, Piwnica-Worms D (2000) Effects of cholesterol and enantiomeric cholesterol on P-glycoprotein localization and function in low-density membrane domains. Biochemistry 39:7651–7661

    Article  CAS  PubMed  Google Scholar 

  122. Liu J, Chang CCY, Westover EJ, Covey DF, Chang T-Y (2005) Investigating the allosterism of acyl-CoA:cholesterol acyltransferase (ACAT) by using various sterols: in vitro and intact cell studies. Biochem J 391:389–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Ikigai H, Akatsuka A, Tsujiyama H, Nakae T, Shimamura T (1996) Mechanism of membrane damage by El Tor hemolysin of Vibrio cholerae O1. Infect Immun 64:2968–2973

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Bhakdi S, Tranum-Jensen J, Sziegoleit A (1985) Mechanism of membrane damage by streptolysin-O. Infect Immun 47:52–60

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Zitzer A, Westover EJ, Covey DF, Palmer M (2003) Differential interaction of the two cholesterol-dependent, membrane-damaging toxins, streptolysin O and Vibrio cholerae cytolysin, with enantiomeric cholesterol. FEBS Lett 553:229–231

    Article  CAS  PubMed  Google Scholar 

  126. Palmer M (2004) Cholesterol and the activity of bacterial toxins. FEMS Microbiol Lett 238:281–289

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work in A.C.’s laboratory was supported by the Council of Scientific and Industrial Research (Govt. of India) Network project BSC0115. A.C. is an Adjunct Professor of Tata Institute of Fundamental Research (Mumbai), RMIT University (Melbourne, Australia), Indian Institute of Technology (Kanpur), and Indian Institute of Science Education and Research (Mohali). A.C. gratefully acknowledges J.C. Bose Fellowship (Dept. of Science and Technology, Govt. of India). Some of the work described in this article was carried out by former members of A.C.’s research group whose contributions are gratefully acknowledged. We thank G. Aditya Kumar for help in making figures, and members of the Chattopadhyay laboratory for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amitabha Chattopadhyay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Jafurulla, M., Chattopadhyay, A. (2017). Structural Stringency of Cholesterol for Membrane Protein Function Utilizing Stereoisomers as Novel Tools: A Review. In: Gelissen, I., Brown, A. (eds) Cholesterol Homeostasis. Methods in Molecular Biology, vol 1583. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6875-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6875-6_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6873-2

  • Online ISBN: 978-1-4939-6875-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics