Skip to main content

Multifunctional Liposomes

  • Protocol
  • First Online:
Cancer Nanotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1530))

Abstract

Liposomes have come a long way since their conception in the 1960s, when they were envisioned primarily for drug delivery. Besides serving the important function of the delivery of a variety of drugs, liposomes offer a platform for the co-delivery of a range of therapeutic and diagnostic agents with different physicochemical properties. They are also amenable to the addition of various targeting moieties such as proteins, sugars, and antibodies for selective targeting at a desired site, including tumors. Currently, the design of stimuli-sensitive liposomes for drug delivery is a lively area of research. Compared to conventional liposomes, stimuli-sensitive nanoplatforms respond to local conditions that are characteristics of the pathological area of interest, allowing the release of active agents at the targeted site. Acidic pH, abnormal levels of enzymes, temperature, altered redox potential, and external magnetic field are examples of internal and external stimuli exploited in the design of stimuli-sensitive liposomes. The penetration of the liposomes into the cells can be enhanced with the help of a variety of cell penetrating peptides, which can be incorporated into the liposomes with the help of various lipid–polymer conjugates. Liposomes are now being employed in diagnostics as well. Imaging of a tumor can be made easier by the inclusion of fluorescent probes. They can also be used for gamma or MR imaging using chelated reporter metals and incorporating them either into the core of the liposome or in the lipid bilayer facing outwards. In this chapter, we discuss methods that are commonly used for the preparation of liposomes with a vast range of functions to meet a variety of needs in diagnostics and drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Torchilin VP (2005) Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4(2):145–160

    Article  CAS  PubMed  Google Scholar 

  2. Szoka F, Papahadjopoulos D (1978) Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proc Natl Acad Sci 75(9):4194–4198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Harris JM, Chess RB (2003) Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov 2(3):214–221

    Article  CAS  PubMed  Google Scholar 

  4. Fan Y, Zhang Q (2013) Development of liposomal formulations: from concept to clinical investigations. Asian J Pharm Sci 8(2):81–87

    Article  CAS  Google Scholar 

  5. Senior J (1986) Fate and behavior of liposomes in vivo: a review of controlling factors. Crit Rev Ther Drug Carrier Syst 3(2):123–193

    Google Scholar 

  6. Nissander UK et al (1990) Liposomes. In: Langer R (ed) Biodegradable polymers as drug delivery systems. Marcel Deker Inc., New York

    Google Scholar 

  7. Yang T et al (2007) Enhanced solubility and stability of PEGylated liposomal paclitaxel: in vitro and in vivo evaluation. Int J Pharm 338:317–326

    Article  CAS  PubMed  Google Scholar 

  8. Suzuki S et al (1995) Preparation of long-circulating immunoliposomes containing adriamycin by a novel method to coat immunoliposomes with poly (ethylene glycol). Biochim Biophys Act (BBA)-General Subjects 1245:9–16

    Article  Google Scholar 

  9. Lukyanov AN et al (2004) Tumor-targeted liposomes: doxorubicin-loaded long-circulating liposomes modified with anti-cancer antibody. J Control Release 100(1):135–144

    Article  CAS  PubMed  Google Scholar 

  10. Glorioso J, DeLuca N, Fink D (1995) Development and application of herpes simplex virus vectors for human gene therapy. Annu Rev Microbiol 49(1):675–710

    Article  CAS  PubMed  Google Scholar 

  11. Zhu L et al (2013) Enhanced anticancer activity of nanopreparation containing an MMP2-sensitive PEG-drug conjugate and cell-penetrating moiety. Proc Natl Acad Sci 110(42):17047–17052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sudimack J, Lee RJ (2000) Targeted drug delivery via the folate receptor. Adv Drug Deliv Rev 41(2):147–162

    Article  CAS  PubMed  Google Scholar 

  13. Ishida O et al (2001) Liposomes bearing polyethyleneglycol-coupled transferrin with intracellular targeting property to the solid tumors in vivo. Pharm Res 18(7):1042–1048

    Article  CAS  PubMed  Google Scholar 

  14. Park J et al (2001) Tumor targeting using anti-her2 immunoliposomes. J Control Release 74(1):95–113

    Article  CAS  PubMed  Google Scholar 

  15. Iakoubov LZ, Torchilin VP (1996) A novel class of antitumor antibodies: nucleosome-restricted antinuclear autoantibodies (ANA) from healthy aged nonautoimmune mice. Oncol Res 9(8):439–446

    Google Scholar 

  16. Iakoubov LZ, Torchilin VP (1997) Nucleosome-releasing treatment makes surviving tumor cells better targets for nucleosome-specific anticancer antibodies. Cancer Detect Prev 22(5):470–475

    Article  Google Scholar 

  17. Trudel D et al (2003) Significance of MMP-2 expression in prostate cancer an immunohistochemical study. Cancer Res 63(23):8511–8515

    CAS  PubMed  Google Scholar 

  18. Schafer FQ, Buettner GR (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 30(11):1191–1212

    Article  CAS  PubMed  Google Scholar 

  19. Gerweck LE, Seetharaman K (1996) Cellular pH gradient in tumor versus normal tissue: potential exploitation for the treatment of cancer. Cancer Res 56(6):1194–1198

    CAS  PubMed  Google Scholar 

  20. Kato Y et al (2013) Acidic extracellular microenvironment and cancer. Cancer Cell Int 13(1):89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sorkin A, Zastrow MV (2002) Signal transduction and endocytosis: close encounters of many kinds. Nat Rev Mol Cell Biol 3(8):600–614

    Article  CAS  PubMed  Google Scholar 

  22. Ellens H, Bentz J, Szoka FC (1984) pH-induced destabilization of phosphatidylethanolamine-containing liposomes: role of bilayer contact. Biochemistry 23(7):1532–1538

    Article  CAS  PubMed  Google Scholar 

  23. Kale AA, Torchilin VP (2007) Design, synthesis, and characterization of pH-sensitive PEG-PE conjugates for stimuli-sensitive pharmaceutical nanocarriers: the effect of substitutes at the hydrazone linkage on the ph stability of PEG-PE conjugates. Bioconjug Chem 18(2):363–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ishida T et al (2003) Development of pH-sensitive liposomes that efficiently retain encapsulated doxorubicin (DXR) in blood. Int J Pharm 309(1):94–100

    Google Scholar 

  25. Go YM, Jones DP (2008) Redox compartmentalization in eukaryotic cells. Biochim Biophys Acta 1780(11):1273–1290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wu G et al (2004) Glutathione metabolism and its implications for health. J Nutr 134(3):489–492

    CAS  PubMed  Google Scholar 

  27. Torchilin VP (2009) Multifunctional and stimuli-sensitive pharmaceutical nanocarriers. Eur J Pharm Biopharm 71(3):431–444

    Article  CAS  PubMed  Google Scholar 

  28. Ishida T et al (2001) Targeted delivery and triggered release of liposomal doxorubicin enhances cytotoxicity against human B lymphoma cells. Biochim Biophys Acta 1515(2):144–158

    Article  CAS  PubMed  Google Scholar 

  29. Zhang JX et al (2004) Pharmaco attributes of dioleoylphosphatidylethanolamine/cholesterylhemisuccinate liposomes containing different types of cleavable lipopolymers. Pharmacol Res 49(2):185–198

    Article  CAS  PubMed  Google Scholar 

  30. Romberg B, Hennink WE, Storm G (2008) Sheddable coatings for long-circulating nanoparticles. Pharm Res 25(1):55–71

    Article  CAS  PubMed  Google Scholar 

  31. Maeda T, Fujimoto K (2006) A reduction-triggered delivery by a liposomal carrier possessing membrane-permeable ligands and a detachable coating. Colloids Surf B Biointerfaces 49(1):15–21

    Article  CAS  PubMed  Google Scholar 

  32. Mansour AM et al (2003) A new approach for the treatment of malignant melanoma: enhanced antitumor efficacy of an albumin-binding doxorubicin prodrug that is cleaved by matrix metalloproteinase 2. Cancer Res 63(1):4062–4066

    CAS  PubMed  Google Scholar 

  33. Zhu L, Kate P, Torchilin VP (2012) Matrix metalloprotease 2-responsive multifunctional liposomal nanocarrier for enhanced tumor targeting. ACS Nano 6(1):3491–3498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hama S et al (2015) Overcoming the polyethylene glycol dilemma via pathological environment-sensitive change of the surface property of nanoparticles for cellular entry. J Control Release 206:67–74

    Article  CAS  PubMed  Google Scholar 

  35. Mabrey S, Sturtevant JM (1976) Investigation of phase transitions of lipids and lipid mixtures by sensitivity differential scanning calorimetry. Proc Natl Acad Sci 73(11):3862–3866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yatvin MB et al (1978) Design of liposomes for enhanced local release of drugs by hyperthermia. Science 202(4374):1290–1293

    Article  CAS  PubMed  Google Scholar 

  37. Anyarambhatla GR, Needham D (1999) Enhancement of the phase transition permeability of DPPC liposomes by incorporation of MPPC: a new temperature-sensitive liposome for use with mild hyperthermia. J Liposome Res 9(1):491–506

    Article  CAS  Google Scholar 

  38. Gaber MH et al (1995) Thermosensitive sterically stabilized liposomes: formulation and in vitro studies on mechanism of doxorubicin release by bovine serum and human plasma. Pharm Res 12(10):1407–1416

    Article  CAS  PubMed  Google Scholar 

  39. Park SJ et al (2000) Synthesis and magnetic studies of uniform iron nanorods and nanospheres. J Am Chem Soc 122(35):8581–8582

    Article  CAS  Google Scholar 

  40. Puntes VF, Krishnan KM, Alivisatos AP (2001) Colloidal nanocrystal shape and size control: the case of cobalt. Science 291(5511):2115–2117

    Article  CAS  PubMed  Google Scholar 

  41. Lu AH, Salabas EL, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46(8):1222–1244

    Article  CAS  Google Scholar 

  42. Pan C et al (2009) Novel and efficient method for immobilization and stabilization of β-d-galactosidase by covalent attachment onto magnetic Fe 3 O 4–chitosan nanoparticles. J Mol Catal B Enzym 61(3):208–215

    Article  CAS  Google Scholar 

  43. Hamada S, Matijević E (1982) Formation of monodispersed colloidal cubic haematite particles in ethanol + water solutions. J Chem Soc Faraday Trans 1 78(7):2147–2156

    Article  CAS  Google Scholar 

  44. Zorko M, Langel Ü (2005) Cell-penetrating peptides: mechanism and kinetics of cargo delivery. Adv Drug Deliv Rev 57(1):529–545

    Article  CAS  PubMed  Google Scholar 

  45. Frankel AD, Pabo CO (1988) Cellular uptake of the tat protein from human immunodeficiency virus. Cell 55(6):1189–1193

    Article  CAS  PubMed  Google Scholar 

  46. Bechara C, Sagan S (2013) Cell-penetrating peptides: 20years later, where do we stand? FEBS Lett 587(12):1693–1702

    Article  CAS  PubMed  Google Scholar 

  47. Kapoor V, McCook BM, Torok FS (2004) An Introduction to PET-CT Imaging 1. Radiographics 24(2):523–543

    Article  PubMed  Google Scholar 

  48. Oku N et al (1995) Real-time analysis of liposomal trafficking in tumor-bearing mice by use of positron emission tomography. Biochim Biophys Acta 1238(1):86–90

    Article  PubMed  Google Scholar 

  49. Seo JW et al (2008) A novel method to label preformed liposomes with 64Cu for positron emission tomography (PET) imaging. Bioconjug Chem 19(12):2577–2584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Iwata R et al (1984) Automated synthesis system for production of 2-deoxy-2-[18 F] fluoro-D-glucose with computer control. Int J Appl Radiat Isot 35(6):445–454

    Article  CAS  Google Scholar 

  51. Skouras A et al (2011) Magnetoliposomes with high USPIO entrapping efficiency, stability and magnetic properties. Nanomedicine 7(5):572–579

    CAS  PubMed  Google Scholar 

  52. Sabaté R et al (2008) Preparation and characterization of extruded magnetoliposomes. Int J Pharm 347(1):156–162

    Article  PubMed  Google Scholar 

  53. Martina MS et al (2005) Generation of superparamagnetic liposomes revealed as highly efficient MRI contrast agents for in vivo imaging. J Am Chem Soc 127(30):10676–10685

    Article  CAS  PubMed  Google Scholar 

  54. Maeda-Yamamoto M et al (1999) Effects of tea polyphenols on the invasion and matrix metalloproteinases activities of human fibrosarcoma HT1080 cells. J Agric Food Chem 47(6):2350–2354

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir P. Torchilin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Aryasomayajula, B., Salzano, G., Torchilin, V.P. (2017). Multifunctional Liposomes. In: Zeineldin, R. (eds) Cancer Nanotechnology. Methods in Molecular Biology, vol 1530. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6646-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6646-2_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6644-8

  • Online ISBN: 978-1-4939-6646-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics