Skip to main content

Adjusting for Familial Relatedness in the Analysis of GWAS Data

  • Protocol
  • First Online:
Bioinformatics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1526))

Abstract

Relatedness within a sample can be of ancient (population stratification) or recent (familial structure) origin, and can either be known (pedigree data) or unknown (cryptic relatedness). All of these forms of familial relatedness have the potential to confound the results of genome-wide association studies. This chapter reviews the major methods available to researchers to adjust for the biases introduced by relatedness and maximize power to detect associations. The advantages and disadvantages of different methods are presented with reference to elements of study design, population characteristics, and computational requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Astle W, Balding DJ (2009) Population structure and cryptic relatedness in genetic association studies. Stat Sci 24:451–471

    Article  Google Scholar 

  2. Vilhjálmsson BJ, Nordborg M (2013) The nature of confounding in genome-wide association studies. Nat Rev Genet 14:1–2

    Article  PubMed  Google Scholar 

  3. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, McCarthy MI, Ramos EM, Cardon LR, Chakravarti A et al (2009) Finding the missing heritability of complex diseases. Nature 461:747–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jakkula E, Leppä V, Sulonen A-M, Varilo T, Kallio S, Kemppinen A, Purcell S, Koivisto K, Tienari P, Sumelahti M-L et al (2010) Genome-wide association study in a high-risk isolate for multiple sclerosis reveals associated variants in STAT3 gene. Am J Hum Genet 86:285–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. McQuillan R, Leutenegger A-L, Abdel-Rahman R, Franklin CS, Pericic M, Barac-Lauc L, Smolej-Narancic N, Janicijevic B, Polasek O, Tenesa A et al (2008) Runs of homozygosity in European populations. Am J Hum Genet 83:359–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zeggini E (2012) Next-generation association studies for complex traits. Nat Genet 43:287–288

    Article  Google Scholar 

  7. Devlin B, Roeder K (1999) Genomic control for association studies. Biometrics 55:997–1004

    Article  CAS  PubMed  Google Scholar 

  8. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38:904–909

    Article  CAS  PubMed  Google Scholar 

  9. Price AL, Zaitlen NA, Reich D, Patterson N (2010) New approaches to population stratification in genome-wide association studies. Nat Rev Genet 11:459–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wooster R, Neuhausen SL, Mangion J, Quirk Y, Ford D, Collins N, Nguyen K, Seal S, Tran T, Averill D et al (1994) Localization of a breast cancer susceptibility gene, BRCA2, to chromosome 13q12-13. Science 265:2088–2090

    Article  CAS  PubMed  Google Scholar 

  11. Li Y, Foo JN, Liany H, Low H-Q, Liu J (2014) Combined linkage and family-based association analysis improved candidate gene detection in Genetic Analysis Workshop 18 simulation data. BMC Proc 8:S29

    Article  PubMed  PubMed Central  Google Scholar 

  12. Li M, Boehnke M, Abecasis GR (2005) Joint modeling of linkage and association: identifying SNPs responsible for a linkage signal. Am J Hum Genet 76:934–949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Spielman RS, Ewens WJ (1998) A sibship test for linkage in the presence of association: the sib transmission/disequilibrium test. Am J Hum Genet 62:450–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhou JJ, Yip W-K, Cho MH, Qiao D, McDonald M-LN, Laird NM (2014) A comparative analysis of family-based and population-based association tests using whole genome sequence data. BMC Proc 8:S33

    Article  PubMed  PubMed Central  Google Scholar 

  15. Almasy L, Blangero J (1998) Multipoint quantitative-trait linkage analysis in general pedigrees. Am J Hum Genet 62:1198–1211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Blangero J, Diego VP, Dyer TD, Almeida M, Peralta J, Kent JWJ, Williams JT, Almasy L, Göring HH (2013) A kernel of truth: statistical advances in polygenic variance component models for complex human pedigrees. Adv Genet 81:1–31

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Thornton T, McPeek MS (2007) Case-control association testing with related individuals: a more powerful quasi-likelihood score test. Am J Hum Genet 81:321–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Stanhope SA, Abney M (2012) GLOGS: a fast and powerful method for GWAS of binary traits with risk covariates in related populations. Bioinformatics 28:1553–1554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jakobsdottir J, McPeek MS (2013) MASTOR: mixed-model association mapping of quantitative traits in samples with related individuals. Am J Hum Genet 92:652–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Falconer DS (1965) The inheritance of liability to certain diseases, estimated from the incidence among relatives. Ann Hum Genet 29:51–76

    Article  Google Scholar 

  21. Chen MH, Liu X, Larson MG, Fox CS, Vasan RS, Yang Q (2011) A comparison of strategies for analyzing dichotomous outcomes in genome-wide association studies with general pedigrees. Genet Epidemiol 35:650–657

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zhou X, Stephens M (2012) Genome-wide efficient mixed model analysis for association studies. Nat Genet 44:821–824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Eu-ahsunthornwattana J, Howey RAJ, Cordell HJ (2014) Accounting for relatedness in family-based association studies: application to Genetic Analysis Workshop 18 data. BMC Proc 8:S79

    Article  PubMed  PubMed Central  Google Scholar 

  24. Listgarten J, Lippert C, Kadie CM, Davidson RI, Eskin E, Heckerman D (2012) Improved linear mixed models for genome-wide association studies. Nat Methods 9:525–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Loh P-R, Tucker G, Bulik-Sullivan BK, Vilhjalmsson BJ, Finucane HK, Salem RM, Chasman DI, Ridker PM, Neale BM, Berger B, Patterson N, Price AL (2015) Efficient Bayesian mixed model analysis increases association power in large cohorts. Nat Genet 47:284–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Svishcheva GR, Axenovich TI, Belonogova NM, van Duijn CM, Aulchenko YS (2012) Rapid variance components-based method for whole-genome association analysis. Nat Genet 44:1166–1170

    Article  CAS  PubMed  Google Scholar 

  27. Aulchenko YS, Ripke S, Isaacs A, van Duijn CM (2007) GenABEL: an R library for genome-wide association analysis. Bioinformatics 23:1294–1296

    Article  CAS  PubMed  Google Scholar 

  28. Kang HM, Sul JH, Service SK, Zaitlen NA, Kong SY, Freimer NB, Sabatti C, Eskin E (2010) Variance component model to account for sample structure in genome-wide association studies. Nat Genet 42:348–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yang J, Lee SH, Goddard ME, Visscher PM (2011) GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet 88:76–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  CAS  PubMed  Google Scholar 

  31. Lynch M, Ritland K (1999) Estimation of pairwise relatedness with molecular markers. Genetics 152:1753–1766

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang J, Zaitlen NA, Goddard ME, Visscher PM, Price AL (2014) Advantages and pitfalls in the application of mixed-model association methods. Nat Genet 46:100–106

    Article  PubMed  PubMed Central  Google Scholar 

  33. Tucker G, Price AL, Berger B (2014) Improving the power of GWAS and avoiding confounding from population stratification with PC-Select. Genetics 197:1045–1049. doi:10.1534/genetics.1114.164285

    Article  PubMed  PubMed Central  Google Scholar 

  34. Thornton T, McPeek MS (2010) ROADTRIPS: case-control association testing with partially or completely unknown population and pedigree structure. Am J Hum Genet 86:172–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lange K, Papp JC, Sinsheimer JS, Sripracha R, Zhou H, Sobel EM (2013) Mendel: the Swiss army knife of genetic analysis programs. Bioinformatics 29:1568–1570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. The 1000 Genomes Project Consortium (2012) An integrated map of genetic variation from 1,092 human genomes. Nature 491:56–65

    Article  PubMed Central  Google Scholar 

  37. Svishcheva GR, Belonogova NM, Axenovich TI (2014) FFBSKAT: fast family-based sequence kernel association test. PLoS One 9:e99407

    Article  PubMed  PubMed Central  Google Scholar 

  38. Uemoto Y, Pong-Wong R, Navarro P, Vitart V, Hayward C, Wilson JF, Rudan I, Campbell H, Hastie ND, Wright AF et al (2013) The power of regional heritability analysis for rare and common variant detection: simulations and application to eye biometrical traits. Front Genet 4, Article 232

    Google Scholar 

  39. Liu JZ, Mcrae AF, Nyholt DR, Medland SE, Wray NR, Brown KM, Investigators AMFS, Hayward NK, Montgomery GW, Visscher PM et al (2010) A versatile gene-based test for genome-wide association studies. Am J Hum Genet 87:139–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hu H, Roach JC, Coon H, Guthery SL, Voelkerding KV, Margraf RL, Durtschi JD, Tavtigian SV, Shankaracharya, Wu W et al (2014) A unified test of linkage analysis and rare-variant association for analysis of pedigree sequence data. Nat Biotechnol 32:663–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jiang D, McPeek MS (2014) Robust rare variant association testing for quantitative traits in samples with related individuals. Genet Epidemiol 38:10–20

    Article  PubMed  Google Scholar 

  42. Liu F, Struchalin MV, van Duijn K, Hofman A, Uitterlinden AG, Aulchenko YS, Kayser M (2011) Detecting low frequent loss-of-function alleles in genome wide association studies with red hair color as an example. PLoS One 6:e28145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Oualkacha K, Dastani Z, Li R, Cingolani PE, Spector TD, Hammond CJ, Richards JB, Ciampi A, Greenwood CMT (2013) Adjusted sequence kernel association test for rare variants controlling for cryptic and family relatedness. Genet Epidemiol 37:366–376

    Article  PubMed  Google Scholar 

  44. De G, Yip W-K, Ionita-Laza I, Laird N (2013) Rare variant analysis for family-based design. PLoS One 8:e48495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Thorisson GA, Smith AV, Krishnan L, Stein LD (2005) The international HapMap project web site. Genome Res 15:1592–1593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ekman P, Friesen WV (1976) Pictures of facial affect. Consulting Psychologists Press, Palo Alto, CA

    Google Scholar 

  47. R Core Team (2014) R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  48. Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265

    Article  CAS  PubMed  Google Scholar 

  49. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de Bakker PIW, Daly MJ et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Thornton TAA, Austin MA (2013) Software and data resources for genetic association studies: Mini Review. CAB Rev 8:1–6

    Article  Google Scholar 

  51. Fitzgerald LM, Patterson B, Thomson R, Polanowski A, Quinn S, Brohede J, Thornton T, Challis D, Mackey DA, Dwyer T et al (2009) Identification of a prostate cancer susceptibility gene on chromosome 5p13q12 associated with risk of both familial and sporadic disease. Eur J Hum Genet 17:368–377

    Article  CAS  PubMed  Google Scholar 

  52. Pirinen M, Donnelly P, Spencer CC (2012) Including known covariates can reduce power to detect genetic effects in case-control studies. Nat Genet 44:848–851

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Russell Thomson .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ExampleDataSet

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Thomson, R., McWhirter, R. (2017). Adjusting for Familial Relatedness in the Analysis of GWAS Data. In: Keith, J. (eds) Bioinformatics. Methods in Molecular Biology, vol 1526. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6613-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6613-4_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6611-0

  • Online ISBN: 978-1-4939-6613-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics