Skip to main content

Assessing the Effect of Class I Histone Deacetylase Activity on DNA Double-Strand Break Repair by Homologous Recombination

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1510))

Abstract

Here we describe the method used in our laboratory for determining the activity of homologous recombination repair of DNA double-strand breaks in cell lines. This plasmid-based method, first published by Pierce et al. 1999 from Maria Jasin’s laboratory, is used along with flow cytometry for demonstrating the positive regulation of class I histone deacetylases on the repair of DNA double-strand breaks by homologous recombination.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Adimoolam S, Sirisawad M, Chen J et al (2007) HDAC inhibitor PCI-24781 decreases RAD51 expression and inhibits homologous recombination. Proc Natl Acad Sci U S A 104:19482–19487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Baumann P, West SC (1998) Role of the human RAD51 protein in homologous recombination and double-stranded-break repair. Trends Biochem Sci 23:247–251

    Article  CAS  PubMed  Google Scholar 

  3. Banuelos CA, Banáth JP, Macphail SH et al (2007) Radiosensitization by the histone deacetylase inhibitor PCI-24781. Clin Cancer Res 13:6816–6826

    Article  CAS  PubMed  Google Scholar 

  4. Kotian S, Liyanarachchi S, Zelent A et al (2011) Histone deacetylases 9 and 10 are required for homologous recombination. J Biol Chem 286:7722–7726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Uhl M, Csernok A, Aydin S et al (2010) Role of SIRT1 in homologous recombination. DNA Repair (Amst) 9:383–393

    Article  CAS  Google Scholar 

  6. Wiese C, Dray E, Groesser T et al (2007) Promotion of homologous recombination and genomic stability by RAD51AP1 via RAD51 recombinase enhancement. Mol Cell 28:482–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Secrist JP, Zhou X, Richon VM (2003) HDAC inhibitors for the treatment of cancer. Curr Opin Investig Drugs 4:1422–1427

    CAS  PubMed  Google Scholar 

  8. Pierce AJ, Johnson RD, Thompson LH et al (1999) XRCC3 promotes homology-directed repair of DNA damage in mammalian cells service XRCC3 promotes homology-directed repair of DNA damage in mammalian cells. Gene Dev 13:2633–2638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hartlerode AJ, Morgan MJ, Wu Y et al (2015) Recruitment and activation of the ATM kinase in the absence of DNA-damage sensors. Nat Struct Mol Biol 22:736–743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dong C, Zhang F, Luo Y et al (2015) p53 suppresses hyper-recombination by modulating BRCA1 function. DNA Repair 33:60–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Richardson C, Moynahan ME, Jasin M (1998) Double-strand break repair by interchromosomal recombination: suppression of chromosomal translocations. Gene Dev 12:3831–3842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Göttlicher M, Minucci S, Zhu P et al (2001) Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J 20:6969–6978

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lee KY, Im JS, Shibata E et al (2015) MCM8-9 complex promotes resection of double-strand break ends by MRE11-RAD50-NBS1 complex. Nat Commun 6:7744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ira G, Pellicioli A, Balijja A et al (2004) DNA end resection, homologous recombination and DNA damage checkpoint activation require CDK1. Nature 431:1011–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yang SZ, Lin FT, Lin WC (2008) MCPH1/BRIT1 cooperates with E2F1 in the activation of checkpoint, DNA repair and apoptosis. EMBO Rep 9:907–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

The authors’ work is supported by the German Research Foundation (DFG) RO3617.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wynand P. Roos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Krumm, A., Roos, W.P. (2017). Assessing the Effect of Class I Histone Deacetylase Activity on DNA Double-Strand Break Repair by Homologous Recombination. In: Krämer, O. (eds) HDAC/HAT Function Assessment and Inhibitor Development. Methods in Molecular Biology, vol 1510. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6527-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6527-4_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6525-0

  • Online ISBN: 978-1-4939-6527-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics