Skip to main content

Laser Doppler Vibrometry Measurements in Structural Dynamics

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Handbook of Experimental Structural Dynamics

Abstract

Laser vibrometry is a powerful tool for measurement of vibration on a variety of structures. Lasers do not mass-load or otherwise change the dynamics of a structure, and so they have enabled measurements from surfaces that are too light, delicate, hot, etc. to allow conventional surface mounted sensors. The position of the measurement point can also be changed readily. Thus, laser vibrometry has also allowed acquisition of measurements over a dense grid of points, to more completely characterize a structure its deformation shapes, the evolution of stress waves, or the identification of structural damages than it might be feasible with other methods. The chapter is divided in two sections: the first one is intended to provide an insight about the theory behind laser Doppler vibrometry (LDV), while the second section aims at giving an overview of the different types of laser Doppler vibrometers that have been developed so far. The chapter is not intended to give a comprehensive discussion of laser Doppler vibrometry, but it provides sufficient details about potentials, issues, and best practice approaches for successfully exploiting such technique in structural dynamics testing. References are provided to direct the interested reader to more detailed information as well as to examples of application cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Drain LE (1980) The laser Doppler technique. John Wiley & Sons Ltd, Chichester

    Google Scholar 

  2. Rembe C (2008) Retardation effects in Laser-Doppler Measurements. In: 8th International conference on vibration measurements by laser techniques, advances and applications, SPIE, vol 7098, p 13

    Google Scholar 

  3. Rembe C, Siegmund G, Steger H, Wörtge M (2006) Measuring MEMS in motion by laser-Doppler vibrometry. In: Osten W (ed) Optical inspection of microsystems, pp 245–292

    Google Scholar 

  4. Bauer M, Ritter F, Siegmund G (2002) High-precision laser vibrometers based on digital Doppler-signal processing. In: 5th International conference on vibration measurements by laser techniques, advances and applications, vol 4827. SPIE, pp 50–61

    Google Scholar 

  5. Rudd MJ (1968) A laser Doppler velocimeter employing the laser as a mixer-oscillator. J Phys E 1:723–726

    Article  Google Scholar 

  6. Giuliani G, Norgia M, Donati S, Bosch T (2002) Laser diode self-mixing technique for sensing applications. J Opt A Pure Appl Opt 4:S283–S294

    Article  Google Scholar 

  7. Scalise L, Yu Y, Giuliani G, Plantier G, Bosch T (2004) Self-mixing laser diode velocimetry: application to vibration and velocity measurement. IEEE Trans Instrum Meas 53(1):223–232

    Article  Google Scholar 

  8. Scalise L, Steenbergen W, de Mul F (2001) Self-mixing feedback in a laser diode for intra-arterial optical blood velocimetry. Appl Opt 40:4608–4615

    Article  Google Scholar 

  9. Dainty JC (1975) Laser speckle and related phenomena. Springer, Berlin

    Book  Google Scholar 

  10. Strean RF, Mitchell LD, Barker AJ (1998) Global noise characteristics of a laser Doppler vibrometer – I. theory. Opt Lasers Eng 30(2):127–139

    Article  Google Scholar 

  11. Rothberg SJ, Baker JR, Halliwell NA (1998) Laser vibrometry: pseudo-vibrations. J Sound Vib 135(3):516–522

    Article  Google Scholar 

  12. Rothberg S (2006) Numerical simulation of speckle noise in laser Vibrometry. Appl Opt 45(19):4523–4533

    Article  Google Scholar 

  13. Martin P, Rothberg S (2009) Introducing speckle noise maps for laser vibrometry. J Optics Lasers in Engineering 47:431–442

    Article  Google Scholar 

  14. Dräbenstedt A. (2007) Quantification of displacement and velocity noise in vibrometer measurements on transversely moving or rotating surfaces. In: Proceedings of SPIE 6616, Optical measurement systems for industrial inspection, vol 6616 (32). https://doi.org/10.1117/12.726115

  15. Vass J, Smìd R, Randall RB, Sovka P, Cristalli C, Torcianti B (2008) Avoidance of speck-le noise in laser vibrometry by the use of kurtosis ratio: application to mechanical fault diagnostics. Mech Syst Signal Process 22:647–671

    Article  Google Scholar 

  16. Paone N, Revel GM (1998) Modelling and experimental analysis of the performance of a laser Doppler vibrometer used to measure surface vibrations through combustive flows. Opt Lasers Eng 30:163–178

    Article  Google Scholar 

  17. Castellini P, Martarelli M, Tomasini EP (2013) Sub-sonic jet pressure fluctuation characterization by tomographic laser interferometry. Exp Fluids 54:12

    Google Scholar 

  18. Buligan G, Paone N, Revel GM, Tomasini EP (2003) The measurement of hermetic com-pressor valve motion by laser vibrometry, IMAC-2003, Kissimmee

    Google Scholar 

  19. Dräbenstedt A (2014) Diversity combining in laser Doppler vibrometry for improved signal reliability. AIP Conference, vol 1600, p 263

    Google Scholar 

  20. Rembe C, Dräbenstedt A (2015) Speckle-insensitive laser-Doppler vibrometry with adaptive optics and signal diversity. Sensor 2015, Erlangen, Deutschland, 19–21 May

    Google Scholar 

  21. Evaluation of measurement data – Guide to the expression of uncertainty in measurement, First edition September 2008 © JCGM 2008

    Google Scholar 

  22. Robinson DC, Serbyn MR, Payne BF (1987) A description of NBS calibration services in mechanical vibration and shock. NBS Technical Note:1232

    Google Scholar 

  23. ISO 16063-41:2011, Methods for the calibration of vibration and shock transducers – Part 41: Calibration of laser vibrometers

    Google Scholar 

  24. ISO 16063-15:2006, Methods for the calibration of vibration and shock transducers – Part 15: primary angular vibration calibration by laser interferometry. International Organization for Standardization (ISO), Geneva

    Google Scholar 

  25. Practical Laser Safety, 2nd edn. CRC Press. ISBN: 0824782402

    Google Scholar 

  26. IEC 60825-1:2014 – Safety of laser products Part 1: equipment classification and requirements

    Google Scholar 

  27. IEC 60825-1:2007 – Safety of laser products Part 1: equipment classification and re-quirements

    Google Scholar 

  28. Paone N, Santolini C, Tomasini EP (1994) Application of a laser Doppler vibrometer to evaluate engine poppet valve kinematics. In: XII International. Modal analysis conference, Hawaii

    Google Scholar 

  29. Hallowell NA (1996) The laser torsional vibrometer: a step forward in rotating machinery diagnostics. J Sound Vib 190(3):399–418

    Article  Google Scholar 

  30. Lewin AC, Roth V, Siegmund G (1995) Measurement of rotational vibrations using a novel interferometric technique. Measurement 16(2):81–90

    Article  Google Scholar 

  31. Revel GM, Tomasini EP (1999) Torsional Vibrations: a laser vibrometry approach. In: Vibration, noise & structural dynamics ‘99, Venezia, pp 448–453

    Google Scholar 

  32. van Netten SM (1988) Laser interferometer microscope for the measurement of nanometer vibrational displacements of a light-scattering microscopic object. J Acoust Soc Am 83:1667–1674

    Article  Google Scholar 

  33. Gasparetti M, Revel GM (1999) The influence of operating conditions on the accuracy of in-plane laser Doppler velocimetry measurements, measurement, vol 26. Elsevier Science Ltd., Oxford, pp 207–220. ISSN 0263-2241

    Google Scholar 

  34. Castellini P, Chiariotti P, Martarelli M, Tomasini EP (2013) Valvetrain motion measure-ments in firing conditions by laser Doppler vibrometer. In: IMAC XXXI International modal analysis conference, Hyatt Regency Orange County, Garden Grove

    Google Scholar 

  35. Massey GA (1968) An optical heterodyne ultrasonic image converter. IEEE Sonics Ultrasonics 56:2157–2161

    Google Scholar 

  36. Halkon BJ, Rothberg SJ (2003) Vibration measurement using continuous scanning laser Doppler vibrometry: theoretical velocity sensitivity analysis with applications. Meas Sci Technol 14:382–393

    Article  Google Scholar 

  37. Yang S, Allen MS (2014) Harmonic transfer function to measure translational and rotational velocities with continuous-scan laser doppler vibrometry. ASME J Vib Acoust 136(2)

    Google Scholar 

  38. Yang S, Allen MS (2012) Output-only modal analysis using continuous-scan laser Doppler vibrometry and application to a 20 kW wind turbine. Mech Syst Signal Process 31:228–245

    Article  Google Scholar 

  39. Stanbridge AB, Ewins DJ (1999) Modal testing using a scanning laser Doppler vibrometer. Mech Syst Signal Process 13(2):255–270

    Article  Google Scholar 

  40. Ribichini, R et al. (2008) Impact testing with a continuously-scanning LDV. In: 26th International modal analysis conference (IMAC XXVI), Orlando

    Google Scholar 

  41. Di Maio D, Carloni G, Ewins DJ (2010) Simulation and validation of ODS measurements made using a continuous SLDV method on a beam excited by a pseudo random signal. In: 28th International modal analysis conference (IMAC XXVIII), Jacksonville

    Google Scholar 

  42. Chiariotti P, Martarelli M, Castellini P (2017) Exploiting continuous scanning laser Doppler vibrometry in timing belt dynamic characterization, 86, Part B, pp 66–81

    Google Scholar 

  43. Allen MS, Sracic MW (2010) A new method for processing impact excited continuous-scan laser Doppler vibrometer measurements. Mech Syst Signal Process 24:721–735

    Article  Google Scholar 

  44. Yang S, Sracic MW, Allen MS (2012) Two algorithms for mass normalizing mode shapes from impact excited continuous-scan laser Doppler vibrometry. J Vib Acoust 134(2):021004

    Article  Google Scholar 

  45. Wereley NM (1991) Analysis and control of linear periodically time varying systems. Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge

    Google Scholar 

  46. Chiariotti P, Martarelli M, Revel GM (2014) Exploiting continuous scanning laser Doppler vibrometry (CSLDV) in time domain correlation methods for noise source identification. Meas Sci Technol 25(7):075204 (13pp). https://doi.org/10.1088/0957-0233/25/7/075204

  47. Chiariotti P, Martarelli M, Revel GM (2017) Delamination detection by multi-level wavelet processing of continuous scanning laser Doppler vibrometry data. Opt Lasers Eng 99:66–79

    Article  Google Scholar 

  48. Salman M, Sabra KG (2011) Synchronized vibrations measurements at multiple locations using a single continuously scanning laser Doppler vibrometer. Applications to non-contact sensing of human body vibrations. J Acoust Soc Am 130(4):2394–2394

    Article  Google Scholar 

  49. Aranchuk V, Lal AK, Zhang H, Hess CF, Sabatier JM (2004) Acoustic sensor for landmine detection using a continuously scanning multi-beam LDV, vol 5415. SPIE, Orlando, p 61

    Google Scholar 

  50. Boedecker S, Dräbenstedt A, Heller L, Kraft A, Leonhardt A, Pape C, Ristau S, Reithmei-er E, Rembe C (2006) Optical derotator for scanning vibrometer measurements on rotating objects, SPIE vol 6345, 63450M

    Google Scholar 

  51. Johansmann M, Fritzsche M, Schell J (2011) A new method for measurement of rotating objects utilizing laser Doppler vibrometry combined with an optical derotator with focus on automotive applications. SAE Technical Paper 2011-26-0043

    Google Scholar 

  52. Castellini P, Paone N (2000) Development of the tracking laser vibrometer: performance and uncertainty analysis. Rev Sci Instrum 71(12):4639

    Article  Google Scholar 

  53. Castellini P, Tomasini EP (2004) Image-based tracking laser Doppler vibrometer. Rev Sci Instrum 75(1):222

    Article  Google Scholar 

  54. Castellini P, Montanini R (2002) Automotive components vibration measurements by tracking laser Doppler vibrometry: advances in signal processing. Meas Sci Technol 13:1266–1279

    Article  Google Scholar 

  55. Fioretti A, Di Maio D, Ewins DJ, Castellini P, Tomasini EP (2010) Deflection shape re-contructions of a rotating five-blade helicopter rotor from SLDV measurements. In: 9th International conference on vibration measurements by laser and noncontact techniques & short course, Ancona

    Google Scholar 

  56. Castellini P, Santolini C (1998) Vibration measurements on blades of naval propeller rotating in water with tracking laser vibrometer. Measurement 24:43–54

    Article  Google Scholar 

  57. Martarelli M, Castellini P, Santolini C, Tomasini EP (2011) Laser Doppler vibrometry on rotating structures in coast-down: resonance frequencies and operational deflection shape characterization. Meas Sci Technol 22:115106

    Article  Google Scholar 

  58. Martarelli M, Castellini P (2012) Performance analysis of continuous tracking laser Doppler vibrometry applied to rotating structures in coast-down. Meas Sci Technol 23:065202. https://doi.org/10.1088/0957-0233/23/6/065202

    Article  Google Scholar 

  59. Di Maio D, Ewins DJ (2010) Applications of continuous tracking SLDV measurement methods to axially symmetric rotating structures using different excitation methods. Mech Syst Signal Process 24(8):3013–3036

    Article  Google Scholar 

  60. Gasparoni A, Allen MS, Yang MS, Sracic MW, Castellini P, Tomasini EP (2010) Experimental modal analysis on a rotating fan using tracking-CSLDV. In: 9th International conference on vibration measurements by laser and noncontact techniques & short course, Ancona, ISBN 978–0–7354-0801-2

    Google Scholar 

  61. Bendel K, Fischer M, Schüssler M (2004) Vibrational analysis of power tools using a novel three dimensional scanning vibrometer. In: Sixth International conference of vibration measurement by laser techniques, vol 5503. SPIE, pp 177–184

    Google Scholar 

  62. Rembe C, Kowarsch R, Ochs W, Dräbenstedt A, Giesen M, Winter M (2014) Optical 3D-vibrometer microscope with picometer-resolution in x, y, and z. Opt Eng 53(3):034108

    Article  Google Scholar 

  63. Haist T, Lingel C, Osten W, Winter M, Giesen M, Ritter F, Sandfort K, Rembe C, Bendel K (2013) Multipoint vibrometry with dynamic and static holograms. Rev Sci Instrum 84:121701

    Article  Google Scholar 

  64. Cupido E, Morel S, Smith D (2003) Multipoint laser Doppler vibrometer for transient analysis. In: IMAC-XXI: conference & exposition on structural dynamics, SEM

    Google Scholar 

  65. Lal AK, Hess C (2006) Array and matrix based laser Doppler vibrometers for measuring noise and vibration. Inter-Noise, Honolulu

    Google Scholar 

  66. Fu Y, Guo M, Phua PB (2011) Multipoint laser Doppler vibrometry with single detector: principles, implementations, and signal analyses. Appl Opt 50(10):1280–1288

    Article  Google Scholar 

  67. Waz AT, Kaczmarek PR, Abranski KM (2009) Laser-fibre vibrometry at 1550 nm. Meas Sci Technol 20:105301

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Castellini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Society for Experimental Mechanics

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Chiariotti, P., Rembe, C., Castellini, P., Allen, M. (2021). Laser Doppler Vibrometry Measurements in Structural Dynamics. In: Allemang, R., Avitabile, P. (eds) Handbook of Experimental Structural Dynamics. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6503-8_4-2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6503-8_4-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-6503-8

  • Online ISBN: 978-1-4939-6503-8

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Laser Doppler Vibrometry Measurements in Structural Dynamics
    Published:
    02 September 2021

    DOI: https://doi.org/10.1007/978-1-4939-6503-8_4-2

  2. Original

    Laser Doppler Vibrometry Measurements in Structural Dynamics
    Published:
    18 September 2020

    DOI: https://doi.org/10.1007/978-1-4939-6503-8_4-1