Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 468 Accesses

Abstract

The fundamental constituents of nuclear matter are quarks and gluons, together called partons. Gluons mediate strong force between quarks. Because strong force between quarks increases with the distance between their separation, quarks and gluons are confined within hadrons as color neutral objects [13]. Free quarks or gluons have never been observed. However, Quantum Chromodynamics (QCD) [47], the fundamental theory governing strong interaction, predicts that quarks and gluons can exist in a deconfined state, called Quark Gluon Plasma (QGP) [811]. The QGP is a plasma in which quarks and gluons can move in an extended volume without being restricted to the hadron size. Relativistic heavy-ion collisions are used to create and study such a QGP state in laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Gell-Mann, A schematic model of baryons and mesons. Phys. Lett. 8 (3), 214–215 (1964). ISSN 0031-9163, http://dx.doi.org/10.1016/S0031-9163(64)92001-3. http://www.sciencedirect.com/science/article/pii/S0031916364920013

    Google Scholar 

  2. G. Zweig, An SU(3) Model for strong interaction symmetry and its breaking. Particle Phys. Phenomenol. Version 1 (1964). Preprint, http://cds.cern.ch/record/352337/

  3. G. Zweig, An SU(3) model for strong interaction symmetry and its breaking. Developments in the Quark Theory of Hadrons, ed. by D. Lichtenberg, S. Rosen. Version 2 (Hadronic Press, Nonantum, 1980), pp. 22–101. http://cds.cern.ch/record/570209/

  4. Y. Nambu, A Systematics of Hadrons in Subnuclear Physics. North-Holland, Amsterdam (1966), pp. 133–142

    Google Scholar 

  5. M.Y. Han, Y. Nambu, Three-triplet model with double SU(3) symmetry. Phys. Rev. 139, B1006–B1010 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  6. H.D. Politzer, Reliable perturbative results for strong interactions? Phys. Rev. Lett. 30, 1346–1349 (1973)

    Article  ADS  Google Scholar 

  7. D.J. Gross, F. Wilczek, Ultraviolet behavior of non-Abelian gauge theories. Phys. Rev. Lett. 30, 1343–1346 (1973)

    Article  ADS  Google Scholar 

  8. E.V. Shuryak, Quark-gluon plasma and hadronic production of leptons, photons and psions. Phys. Lett. B 78, 150 (1978)

    Article  ADS  Google Scholar 

  9. H. Bohr, H. Nielsen, Hadron production from a boiling quark soup: a thermodynamical quark model predicting particle ratios in hadronic collisions. Nucl. Phys. B 128 (2), 275–293 (1977)

    Article  ADS  Google Scholar 

  10. M. Plümer, S. Raha, R.M. Weiner, How free is the quark-gluon-plasma? Nucl. Phys. A 418, 549–557 (1984)

    Article  ADS  Google Scholar 

  11. W.A. Zajc, The fluid nature of quark-gluon plasma Nucl. Phys. A 805, 1–4, 283c–294c (2008); INPC 2007 Proceedings of the 23rd International Nuclear Physics Conference

    Google Scholar 

  12. J.F. Gunion, R.S. Willey, Hadronic spectroscopy for a linear quark containment potential. Phys. Rev. D, 12, 174–186 (1975)

    Article  ADS  Google Scholar 

  13. A. Chodos, R.L. Jaffe, K. Johnson, C.B. Thorn, V.F. Weisskopf, New extended model of hadrons. Phys. Rev. D. 9, 3471–3495 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  14. H. Satz, The analysis of dense matter. Extreme States of Matter in Strong Interaction Physics. Lecture Notes in Physics, vol. 841 (Springer, Berlin, 2012)

    Google Scholar 

  15. J. Bjorken, Highly relativistic nucleus-nucleus collisions: the central rapidity region. Phys. Rev. D 27, 140 (1983)

    Article  ADS  Google Scholar 

  16. J. Kuti, J. Polónyi, K. Szlachányi, Monte Carlo study of SU(2) gauge theory at finite temperature. Phys. Lett. B 98 (3), 199–204 (1981), ISSN 0370-2693, http://dx.doi.org/10.1016/0370-2693(81)90987-4. http://www.sciencedirect.com/science/article/pii/0370269381909874

    Google Scholar 

  17. L.D. McLerran, B. Svetitsky, A Monte Carlo study of SU(2) Yang-Mills theory at finite temperature. Phys. Lett. B 98 (3), 195–198 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  18. E. Iancu, QCD in heavy ion collisions. arXiv:1205.0579 (2012)

    Google Scholar 

  19. M. Kliemant et al., Global properties of nucleus-nucleus collisions. The Physics of the Quark-Gluon Plasma (Springer, Berlin, 2010)

    Google Scholar 

  20. B. Muller, J.L. Nagle, Results from the relativistic heavy ion collider. Annu. Rev. Nucl. Part. Sci. 56, 93–135 (2006)

    Article  ADS  Google Scholar 

  21. J. Sollfrank, P. Huovinen, M. Kataja, P.V. Ruuskanen, M. Prakash, R. Venugopalan, Hydrodynamical description of 200A GeV/c S+Au collisions: hadron and electromagnetic spectra. Phys. Rev. C 55, 392–410 (1997)

    Article  ADS  Google Scholar 

  22. B. Schlei, U. Ornik, M. Plumer, D. Strottman, R. Weiner, Hydrodynamical analysis of single inclusive spectra and Bose-Einstein correlations for Pb + Pb at 160 A GeV. Phys. Lett. B 376, 212–219 (1996)

    Article  ADS  Google Scholar 

  23. The ATLAS collaboration, Measurement of forward-backward multiplicity correlations in lead-lead, proton-lead and proton-proton collisions with the ATLAS detector, in 25th International Conference on Ultra-relativistic Nucleus-nucleus Collisions, Kobe. ATLAS-CONF-2015-051 (2015). https://cds.cern.ch/record/2055672

  24. C. Hung, E.V. Shuryak, Equation of state, radial flow and freezeout in high-energy heavy ion collisions. Phys. Rev. C 57, 1891–1906 (1998)

    Article  ADS  Google Scholar 

  25. J. Adams et al., Identified particle distributions in pp and Au+Au collisions at \(\sqrt{s_{ _{\mathrm{NN}}}} = 200\) GeV. Phys. Rev. Lett. 92, 112301 (2004)

    Google Scholar 

  26. H.A. Gustafsson, H.H. Gutbrod, B. Kolb, H.Löhner, B. Ludewigt, A.M. Poskanzer, T. Renner, H. Riedesel, H.G. Ritter, A. Warwick, F. Weik, H. Wieman, Collective flow observed in relativistic nuclear collisions. Phys. Rev. Lett. 52, 1590–1593 (1984)

    Google Scholar 

  27. J. Adams et al., Azimuthal anisotropy at RHIC: the first and fourth harmonics. Phys. Rev. Lett. 92, 062301 (2004)

    Article  ADS  Google Scholar 

  28. J. Adams et al., Directed flow in Au+Au collisions at \(\sqrt{s_{ _{\mathrm{NN } }}} = 62\) GeV. Phys. Rev. C 73, 034903 (2006)

    Google Scholar 

  29. B. Abelev et al., System-size independence of directed flow at the relativistic heavy-ion collider. Phys. Rev. Lett. 101, 252301 (2008)

    Article  ADS  Google Scholar 

  30. L. Adamczyk et al., Directed Flow of Identified Particles in Au + Au Collisions at \(\sqrt{s_{ _{\mathrm{NN } }}} = 200\) GeV at RHIC. Phys. Rev. Lett. 108, 202301 (2012)

    Article  ADS  Google Scholar 

  31. L. Adamczyk et al., Beam-energy dependence of directed flow of protons, antiprotons and pions in Au+Au collisions. Phys. Rev. Lett. 112, 162301 (2014)

    Article  ADS  Google Scholar 

  32. B. Abelev et al., Directed flow of charged particles at midrapidity relative to the spectator plane in Pb-Pb collisions at \(\sqrt{s_{ _{\mathrm{NN } }}} = 2.76\) TeV. Phys. Rev. Lett. 111 (23), 232302 (2013)

    Google Scholar 

  33. R.S. Bhalerao, J.-Y. Ollitrault, Eccentricity fluctuations and elliptic flow at RHIC. Phys. Lett. B 641 (3–4), 260–264 (2006)

    Article  ADS  Google Scholar 

  34. D. Teaney, L. Yan, Nonlinearities in the harmonic spectrum of heavy ion collisions with ideal and viscous hydrodynamics. Phys. Rev. C 86, 044908 (2012)

    Article  ADS  Google Scholar 

  35. H. Niemi, G. Denicol, H. Holopainen, P. Huovinen, Event-by-event distributions of azimuthal asymmetries in ultrarelativistic heavy-ion collisions. Phys. Rev. C 87, 054901 (2013)

    Article  ADS  Google Scholar 

  36. F. Gardim, F. Grassi, M. Luzum, J.-Y. Ollitrault, Mapping the hydrodynamic response to the initial geometry in heavy-ion collisions. Phys. Rev. C 85, 024908 (2012)

    Article  ADS  Google Scholar 

  37. B. Alver, G. Roland, Collision-geometry fluctuations and triangular flow in heavy-ion collisions. Phys. Rev. C. 81, 054905 (2010)

    Article  ADS  Google Scholar 

  38. B. Alver et al., System size, energy, pseudorapidity, and centrality dependence of elliptic flow. Phys. Rev. Lett. 98, 242302 (2007)

    Article  ADS  Google Scholar 

  39. A. Bilandzic, R. Snellings, S. Voloshin, Flow analysis with cumulants: direct calculations. Phys. Rev. C 83, 044913 (2011)

    Article  ADS  Google Scholar 

  40. D. d’Enterria, B. Betz, High-p T hadron suppression and jet quenching. The Physics of the Quark-Gluon Plasma (Springer, Berlin, 2010)

    Google Scholar 

  41. A.H. Mueller, Advanced Series on Directions in High Energy Physics, vol. 5 (World Scientific, Singapore, 1989)

    Google Scholar 

  42. J. Cronin et al., Production of hadrons at large transverse momentum at 200, 300, and 400 GeV. Phys. Rev. D 11, 3105 (1975)

    Article  ADS  Google Scholar 

  43. K. Adcox et al., Suppression of hadrons with large transverse momentum in central Au + Au collisions at \(\sqrt{s_{\mathrm{NN }}} = 130\,\mathrm{GeV}\). Phys. Rev. Lett. 88, 022301 (2002)

    Article  ADS  Google Scholar 

  44. C. Adler et al., Centrality dependence of high-p T hadron suppression in Au + Au collisions at \(\sqrt{s_{\mathrm{NN }}} = 130\,\mathrm{GeV}\),” Phys. Rev. Lett. 89, 202301 (2002)

    Google Scholar 

  45. N.N. Ajitanand, J.M. Alexander, P. Chung, W.G. Holzmann, M. Issah, R.A. Lacey, A. Shevel, A. Taranenko, P. Danielewicz, Decomposition of harmonic and jet contributions to particle-pair correlations at ultrarelativistic energies. Phys. Rev. C 72, 011902 (2005)

    Article  ADS  Google Scholar 

  46. C. Adler et al., Disappearance of back-to-back high p T hadron correlations in central Au+Au collisions at \(\sqrt{s_{ _{\mathrm{NN } }}} = 200\) GeV. Phys. Rev. Lett. 90, 082302 (2003)

    Article  ADS  Google Scholar 

  47. J. Adams et al., Direct observation of dijets in central Au+Au collisions at \(\sqrt{s_{ _{\mathrm{NN } }}} = 200\) GeV. Phys. Rev. Lett. 97, 162301 (2006)

    Google Scholar 

  48. J. Adams et al., Distributions of charged hadrons associated with high transverse momentum particles in pp and Au + Au collisions at \(\sqrt{s_{\mathrm{NN }}} = 200\,\mathrm{GeV}\). Phys. Rev. Lett. 95, 152301 (2005)

    Article  ADS  Google Scholar 

  49. B.I. Abelev et al., Long range rapidity correlations and jet production in high energy nuclear collisions. Phys. Rev. C 80, 064912 (2009)

    Article  ADS  Google Scholar 

  50. B. Alver et al., High transverse momentum triggered correlations over a large pseudorapidity acceptance in Au + Au collisions at \(\sqrt{s_{\mathrm{NN }}} = 200\,\mathrm{GeV}\). Phys. Rev. Lett. 104, 062301 (2010)

    Article  ADS  Google Scholar 

  51. J. Adams et al., \(\Delta \phi - \Delta \eta\) correlations in central Au+Au collisions at \(\sqrt{s_{\mathrm{NN }}} = 200\,\mathrm{GeV}\). Phys. Rev. C 75, 034901 (2007)

    Google Scholar 

  52. B.I. Abelev et al., Long range rapidity correlations and jet production in high energy nuclear collisions. Phys. Rev. C 80, 064912 (2009)

    Article  ADS  Google Scholar 

  53. J.J.-M.F. Gelis, E. Iancu, R. Venugopalan, The color glass condensate. Annu. Rev. Nucl. Part. Sci. 60, 463–489 (2010)

    Article  ADS  Google Scholar 

  54. S. Gavin, L. McLerran, G. Moschelli, Long range correlations and the soft ridge in relativistic nuclear collisions. Phys. Rev. C 79, 051902 (2009)

    Article  ADS  Google Scholar 

  55. L. McLerran, R. Venugopalan, Computing quark and gluon distribution functions for very large nuclei. Phys. Rev. D 49, 2233–2241 (1994)

    Article  ADS  Google Scholar 

  56. T. Lappi, L. McLerran, Some features of the glasma. Nucl. Phys. A 772 (3–4), 200–212 (2006)

    Article  ADS  Google Scholar 

  57. A. Adare et al., Dihadron azimuthal correlations in Au+Au collisions at \(\sqrt{s_{\mathrm{NN }}} = 200\) GeV. Phys. Rev. C 78, 014901 (2008)

    Google Scholar 

  58. F. Wang, Supersonic jets in relativistic heavy-ion collisions. AIP Conf. Proc. 892 (1), 417–420 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yi, L. (2016). Introduction. In: Study of Quark Gluon Plasma By Particle Correlations in Heavy Ion Collisions. Springer Theses. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6487-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6487-1_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-6485-7

  • Online ISBN: 978-1-4939-6487-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics