Skip to main content

Carbonic Anhydrase and Epilepsy

  • Protocol
  • First Online:
Antiepileptic Drug Discovery

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

  • 691 Accesses

Abstract

The deficiencies of current antiepileptic drugs (AEDs) demand the search of new active compounds through novel strategies of drug discovery. Particularly, the design of AEDs based on molecular targets constitutes a promising alternative to empirical screening, the traditional method to detect anticonvulsant action in new structures. In this chapter we described the advances in the dynamic field of carbonic anhydrases, with emphasis in the development of selective inhibitors as anticonvulsants. We first detailed the 3D architecture of carbonic anhydrases and the mechanism of action of classical inhibitors. Then we reviewed the known anticonvulsant drugs that present carbonic anhydrase inhibition and the progress made in the design of selective inhibitors of CAVII, the isoform implicated in the generation of febrile seizures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berg AT, Berkovic SF, Brodie MJ et al (2010) Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE commission on classification and terminology, 2005–2009. Epilepsia 51:676–685

    Article  PubMed  Google Scholar 

  2. Staley K (2015) Molecular mechanisms of epilepsy. Nat Neurosci 18:367–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Löscher W, Schmidt D (2011) Modern antiepileptic drug development has failed to deliver: ways out of the current dilemma. Epilepsia 52:657–678

    Article  PubMed  Google Scholar 

  4. French JA (2007) Refractory epilepsy: clinical overview. Epilepsia 48:3–7

    Article  PubMed  Google Scholar 

  5. Loscher W (2011) Critical review of current animal models of seizures and epilepsy used in the discovery and development of new antiepileptic drugs. Seizure 20:359–368

    Article  PubMed  Google Scholar 

  6. Krall RL, Penry JK, White BG et al (1978) Anti-epileptic drug development. II Anticonvulsant drug screening. Epilepsia 19:404–428

    Google Scholar 

  7. Rogawski MA (2006) Molecular targets versus models for new antiepileptic drug discovery. Epilepsy Res 68:22–28

    Article  PubMed  PubMed Central  Google Scholar 

  8. Löscher W, Klitgaard H, Twyman RE et al (2013) New avenues for anti-epileptic drug discovery and development. Nat Rev Drug Discov 12:757–776

    Article  PubMed  Google Scholar 

  9. Bialer M, White HS (2010) Key factors in the discovery and development of new antiepileptic drugs. Nat Rev Drug Discov 9:68–82

    Article  CAS  PubMed  Google Scholar 

  10. Meldrum B, Rogawski MA (2007) Molecular targets for antiepileptic drug development. Neurotherapeutics 4:18–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Thiry A, Dogné JM, Supuran CT, Masereel B (2007) Carbonic anhydrase inhibitors as anticonvulsant agents. Curr Top Med Chem 7:855–864

    Article  CAS  PubMed  Google Scholar 

  12. McKenna R, Frost SC (2014) Overview of the carbonic anhydrase family. In: Frost SC, McKenna R (eds) Carbonic anhydrase: mechanism, regulation, links to disease, and industrial applications. Springer, London

    Google Scholar 

  13. Frost SC (2014) Physiological functions of the alpha class of carbonic anhydrases. In: Frost SC, McKenna R (eds) Carbonic anhydrase: mechanism, regulation, links to disease, and industrial Applications. Springer, London

    Chapter  Google Scholar 

  14. Ruusuvuori E, Kaila K (2014) Carbonic anhydrases and brain pH in the control of neuronal excitability. In: Frost SC, McKenna R (eds) Carbonic anhydrase: mechanism, regulation, links to disease, and industrial Applications. Springer, London

    Google Scholar 

  15. Xiong ZQ, Stringer JL (2000) Regulation of extracellular pH in the developing hippocampus. Dev Brain Res 122:113–117

    Article  CAS  Google Scholar 

  16. Stringer JL, Lothman EW (1996) During after discharges in the young rat in vivo extracellular potassium is not elevated above adult levels. Dev Brain Res 91:136–139

    Article  CAS  Google Scholar 

  17. Aram JA, Lodge D (1987) Epileptiform activity induced by alkalosis in rat neocortical slices: block by antagonists of N-methyl-D-aspartate. Neurosci Lett 83:345–350

    Article  CAS  PubMed  Google Scholar 

  18. Bonnet U, Wiemann M, Bingmann D (1998) CO2/HCO3 (−)-withdrawal from the bath medium of hippocampal slices: biphasic effect on intracellular pH and bioelectric activity of CA3-neurons. Brain Res 796:161–170

    Article  CAS  PubMed  Google Scholar 

  19. Velisek L, Dreier JP, Stanton PK et al (1994) Lowering of extracellular pH suppresses low-Mg(2+)-induces seizures in combined entorhinal cortex-hippocampal slices. Exp Brain Res 101:44–52

    Article  CAS  PubMed  Google Scholar 

  20. Xiong ZQ, Saggau P, Stringer JL (2000) Activity-dependent intracellular acidification correlates with the duration of seizure activity. J Neurosci 20:1290–1296

    CAS  PubMed  Google Scholar 

  21. Guaranha MS, Garzon E, Buchpiguel CA et al (2005) Hyperventilation revisited: physiological effects and efficacy on focal seizure activation in the era of video-EEG monitoring. Epilepsia 46:69–75

    Article  PubMed  Google Scholar 

  22. Schuchmann S, Schmitz D, Rivera C et al (2006) Experimental febrile seizures are precipitated by a hyperthermia-induced respiratory alkalosis. Nat Med 12:817–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schuchmann S, Hauck S, Henning S et al (2011) Respiratory alkalosis in children with febrile seizures. Epilepsia 52:1949–1955

    Article  PubMed  Google Scholar 

  24. Esplin DW, Rosenstein R (1963) Analysis of spinal depressant actions of carbonic dioxide and acetazolamide. Arch Int Pharmacodyn Ther 143:499–513

    Google Scholar 

  25. White HS, Woodbury DM, Chen CF et al (1986) Role of glial cation and anion transport mechanisms in etiology and arrest of seizures. Adv Neurol 44:695–712

    CAS  PubMed  Google Scholar 

  26. Supuran CT (2008) Carbonic anhydrases—an overview. Curr Pharm Des 14:603–614

    Article  CAS  PubMed  Google Scholar 

  27. Supuran CT (2010) Carbonic anhydrase inhibitors. Bioorg Med Chem Lett 20:3467–3474

    Article  CAS  PubMed  Google Scholar 

  28. Carta F, Supuran CT, Scozzafava A (2014) Sulfonamides and their isosters as carbonic anhydrase inhibitors. Future Med Chem 6:1149–1165

    Article  CAS  PubMed  Google Scholar 

  29. Aggarwal M, Kondeti B, McKenna R (2013) Anticonvulsant/antiepileptic carbonic anhydrase inhibitors: a patent review. Expert Opin Ther Pat 23:717–724

    Article  CAS  PubMed  Google Scholar 

  30. Bergstrom WH, Garzoli RF, Lombroso C et al (1952) Observations on metabolic and clinical effects of carbonic anhydrase inhibitors in epileptics. Am J Dis Child 84:771–772

    Google Scholar 

  31. Millichap JG, Thatcher LD, Williams PM (1955) Anticonvulsant action of acetazolamide, alone and in combination with ammonium chloride. Fed Proc 14:370–371

    Google Scholar 

  32. Millichap JG, Woodbury DM, Goodman LS (1956) Mechanism of the anticonvulsant action of acetazolamide, a carbonic anhydrase inhibitor. Neurology 6:552–559

    Article  CAS  PubMed  Google Scholar 

  33. Merlis S (1956) Diamox: a carbonic anhydrase inhibitor: its use in epilepsy. Neurology 4:863–868

    Article  Google Scholar 

  34. Lombroso C, Davidson DT, Grossi-Bianchi L (1956) Further evaluation of acetazolamide (Diamox) in treatment of epilepsy. JAMA 160:268–272

    Article  CAS  Google Scholar 

  35. Lim LL, Foldvary N, Mascha E et al (2001) Acetazolamide in women with catamenial epilepsy. Epilepsia 42:746–749

    Article  CAS  PubMed  Google Scholar 

  36. Reiss WG, Oles KS (1996) Acetazolamide in the treatment of seizures. Ann Pharmacother 30:514–519

    CAS  PubMed  Google Scholar 

  37. Inoue H, Hazama H, Hamazoe K et al (1984) Antipsychotic and prophylactic effects of acetazolamide (Diamox) on atypical psychosis. Folia Psychiatr Neurol Jpn 38:425–436

    CAS  PubMed  Google Scholar 

  38. Wolf P (2011) Acute drug administration in epilepsy: a review. CNS Neurosci Ther 17:442–448

    Article  CAS  PubMed  Google Scholar 

  39. Ansell B, Clarke E (1956) Acetazolamide in treatment of epilepsy. Br Med J 1:650–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lombroso CT, Forxythe I (1960) A long term follow up of acetazolamide/Diamox in the treatment of epilepsy. Epilepsia 1:493–500

    Article  CAS  PubMed  Google Scholar 

  41. Woodbury DM, Rollins LT, Gardner MD et al (1958) Effects of carbon dioxide on brain excitability and electrolytes. Am J Physiol 192:79–90

    CAS  PubMed  Google Scholar 

  42. Gray WD, Rauh CE, Osterbero AC et al (1958) The anticonvulsant actions of methazolamide (a carbonic anhydrase inhibitor) and diphenylhydantoin. J Pharmacol Exp Ther 124:149–160

    CAS  PubMed  Google Scholar 

  43. Ben-Zeev B, Watemberg N, Lerman P et al (2004) Sulthiame in childhood epilepsy. Pediatr Int 46:521–524

    Article  CAS  PubMed  Google Scholar 

  44. Wirrell E, Sherman EMS, Vanmastrigt R et al (2008) Deterioration in cognitive function in children with benign epilepsy of childhood with central temporal spikes treated with sulthiame. J Child Neurol 23:14–21

    Article  PubMed  Google Scholar 

  45. Lyseng-Williamson KA, Yang LPH (2007) Topiramate: a review of its use in the treatment of epilepsy. Drugs 67:2231–2256

    Article  CAS  PubMed  Google Scholar 

  46. Silberstein SD, Ben-Menachem E, Shank RP et al (2005) Topiramate monotherapy in epilepsy and migraine prevention. Clin Ther 27:154–165

    Article  CAS  PubMed  Google Scholar 

  47. Arbaizar B, Gómez-Acebo I, Llorca J (2008) Efficacy of topiramate in bulimia nervosa and binge-eating disorder: a systematic review. Gen Hosp Psychiatry 30:471–475

    Article  PubMed  Google Scholar 

  48. Shank RP, Maryanoff BE (2008) Molecular pharmacodynamics, clinical therapeutics, and pharmacokinetics of topiramate. CNS Neurosci Ther 14:120–142

    Article  CAS  PubMed  Google Scholar 

  49. Dias VV, Balanzá-Martinez V, Soeiro-De-Souza MG et al (2012) Pharmacological approaches in bipolar disorders and the impact on cognition: a critical overview. Acta Psychiatr Scand 126:315–331

    Article  CAS  PubMed  Google Scholar 

  50. Bray GA (2014) Medical treatment of obesity: the past, the present and the future. Best Pract Res Clin Gastroenterol 28:665–683

    Article  CAS  PubMed  Google Scholar 

  51. Recacha R, Costanzo MJ, Maryanoff BE et al (2012) Crystal structure of human carbonic anhydrase II complexed with an anti-convulsant sugar sulphamate. Biochem J 361:437–441

    Article  Google Scholar 

  52. De Simone G, Scozzafava A, Supuran CT (2009) Which carbonic anhydrases are targeted by the antiepileptic sulfonamides and sulfamates? Chem Biol Drug Des 74:317–321

    Article  PubMed  Google Scholar 

  53. Maryanoff BE (2009) Pharmaceutical Gold from neurostabilizing agents: topiramate and successor molecules. J Med Chem 52:3431–3440

    Article  CAS  PubMed  Google Scholar 

  54. Zona C, Ciotti MT, Avoli M (1997) Topiramate attenuates voltage-gated sodium currents in rat cerebellar granule cells. Neurosci Lett 23:123–126

    Article  Google Scholar 

  55. DeLorenzo RJ, Sombati S, Coulter DA (2000) Effects of topiramate on sustained repetitive firing and spontaneous recurrent seizure discharges in cultured hippocampal neurons. Epilepsia 41:S40–S44

    Article  CAS  PubMed  Google Scholar 

  56. Taverna S, Sancini G, Mantegazza M et al (1999) Inhibition of transient and persistent Na+ current fractions by the new anticonvulsant topiramate. J Pharmacol Exp Ther 288:960–968

    CAS  PubMed  Google Scholar 

  57. McLean MJ, Bukhari AA, Wamil AW (2000) Effects of topiramate on sodium-dependent action-potential firing by mouse spinal cord neurons in cell culture. Epilepsia 41:S21–S24

    Article  CAS  PubMed  Google Scholar 

  58. Zhang X, Velumian AA, Jones OT et al (2000) Modulation of high-voltage-activated calcium channels in dentate granule cells by topiramate. Epilepsia 41:S52–S60

    Article  CAS  PubMed  Google Scholar 

  59. Skradski S, White HS (2000) Topiramate blocks kainate-evoked cobalt influx into cultured neurons. Epilepsia 41:S45–S47

    Article  CAS  PubMed  Google Scholar 

  60. Vega D, Maalouf NM, Sakhaee K (2007) Increased propensity for calcium phosphate kidney stones with topiramate use. Expert Opin Drug Saf 6:547–557

    Article  CAS  PubMed  Google Scholar 

  61. Mahmoud AA, Rizk T, El-Bakri NK et al (2011) Incidence of kidney stones with topiramate treatment in pediatric patients. Epilepsia 52:1890–1893

    Article  CAS  PubMed  Google Scholar 

  62. Leppik I, Willmore L, Homan R et al (1993) Efficacy and safety of zonisamide: results of a multicenter study. Epilepsy Res 14:165–173

    Article  CAS  PubMed  Google Scholar 

  63. Leppik IE (2004) Zonisamide: chemistry, mechanism of action, and pharmacokinetics. Seizure 13:S5–S9

    Article  PubMed  Google Scholar 

  64. Dupont S, Stefan H (2012) Zonisamide in clinical practice. Acta Neurol Scand Suppl 194:29–35

    Article  PubMed  Google Scholar 

  65. Masuda Y, Karasawa T, Shiraishi Y, Hori M et al (1980) 3-Sulfamoylmethyl-1,2-benzisoxazole, a new type of anticonvulsant drug: pharmacological profile. Arzneimittelforschung 30:477–483

    CAS  PubMed  Google Scholar 

  66. Karata MO, Uslu H, Sarı S et al (2015) Coumarin or benzoxazinone based novel carbonic anhydrase inhibitors: synthesis, molecular docking and anticonvulsant studies. J Enzyme Inhib Med Chem. doi:10.3109/14756366.2015.1063624

    Google Scholar 

  67. Garro Martinez JC, Vega-Hissi EG, Andrada MF et al (2014) Lacosamide derivatives with anticonvulsant activity as carbonic anhydrase inhibitors. Molecular modeling, docking and QSAR analysis. Curr Comput Aided Drug Des 10:160–167

    Article  CAS  PubMed  Google Scholar 

  68. Yusuf M, Khan RA, Maria Khan M et al (2013) An interactive human carbonic anhydrase-II (hCA-II) receptor–pharmacophore molecular model & anticonvulsant activity of the designed and synthesized 5-Amino-1,3,4-Thiadiazole-2-Thiol conjugated imine derivatives. Chem Biol Drug Des 81:666–673

    Article  CAS  PubMed  Google Scholar 

  69. Thiry A, Dogné JM, Supuran CT et al (2009) Drug design of carbonic anhydrase inhibitors as anticonvulsant agents. In: Supuran CT, Winum JY (eds) Drug design of zinc-enzyme inhibitors: functional, structural, and disease applications. Wiley, New Jersey

    Google Scholar 

  70. Gavernet L, Gonzalez Funes JL, Palestro PH (2013) Inhibition pattern of sulfamide-related compounds in binding to carbonic anhydrase isoforms I, II, VII, XII and XIV. Bioorg Med Chem 21:1410–1418

    Article  CAS  PubMed  Google Scholar 

  71. Rodríguez OM, Maresca A, Témpera CA et al (2011) N-β-Glycosyl sulfamides are selective inhibitors of the cancer associated carbonic anhydrase isoforms IX and XII. Bioorg Med Chem Lett 2:4447–4450

    Article  Google Scholar 

  72. Smainea FZ, Winum JY, Montero JL et al (2007) Carbonic anhydrase inhibitors: selective inhibition of the extracellular, tumor-associated isoforms IX and XII over isozymes I and II with glycosyl-thioureido-sulfonamides. Bioorg Med Chem Lett 17:5096–5100

    Article  Google Scholar 

  73. Casey JR, Morgan PE, Vullo D et al (2004) Carbonic anhydrase inhibitors. Design of selective, membrane-impermeant inhibitors targeting the human tumor-associated isozyme IX. J Med Chem 47:2337–2347

    Article  CAS  PubMed  Google Scholar 

  74. Winum JY, Temperini C, El Cheikh K et al (2006) Carbonic anhydrase inhibitors: clash with Ala65 as a means for designing inhibitors with low affinity for the ubiquitous isozyme II, exemplified by the crystal structure of the topiramate sulfamide analogue. J Med Chem 49:7024–7031

    Article  CAS  PubMed  Google Scholar 

  75. Gavernet L, Gonzalez Funes JL, Bruno Blanch LE (2010) Affinity of sulfamates and sulfamides to carbonic anhydrase II isoform: experimental and molecular modeling approaches. J Chem Inf Model 50:1113–1122

    Article  CAS  PubMed  Google Scholar 

  76. Farrant M, Kaila K (2007) The cellular, molecular and ionic basis of GABAA receptor signalling. Prog Brain Res 160:59–87

    Article  CAS  PubMed  Google Scholar 

  77. Ruusuvuori E, Huebner AK, Kirilkin I et al (2013) Neuronal carbonic anhydrase VII provides GABAergic excitatory drive to exacerbate febrile seizures. EMBO J 32:2275–2286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Montgomery JC, Venta PJ, Eddy RL et al (1991) Characterization of the human gene for a newly discovered carbonic anhydrase, CA VII, and its localization to chromosome 16. Genomics 11:835–848

    Article  CAS  PubMed  Google Scholar 

  79. Truppo E, Supuran CT, Sandomenico A et al (2012) Carbonic anhydrase VII is S-glutathionylated without loss of catalytic activity and affinity for sulfonamide inhibitors. Bioorg Med Chem Lett 22:1560–1564

    Article  CAS  PubMed  Google Scholar 

  80. Bootorabi F, Janis J, Smith E et al (2010) Analysis of a shortened form of human carbonic anhydrase VII expressed in vitro compared to the full-length enzyme. Biochimie 92:1072–1080

    Article  CAS  PubMed  Google Scholar 

  81. Gitto R, Agnello S, Ferro S et al (2010) Identification of potent and selective human carbonic anhydrase VII (hCA VII) inhibitors. ChemMedChem 5:823–826

    Article  CAS  PubMed  Google Scholar 

  82. Gitto R, Damiano FM, Mader P et al (2012) Synthesis, structure–activity relationship studies, and X-ray crystallographic analysis of arylsulfonamides as potent carbonic anhydrase inhibitors. J Med Chem 55:3891–3899

    Article  CAS  PubMed  Google Scholar 

  83. De Luca L, Ferro S, Damiano FM et al (2014) Structure-based screening for the discovery of new carbonic anhydrase VII inhibitors. Eur J Med Chem 71:105–111

    Article  PubMed  Google Scholar 

  84. Berman HM, Westbrook J, Feng Z et al (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Irwin JJ, Sterling T, Mysinger MM et al (2012) ZINC: a free tool to discover chemistry for biology. J Chem Inf Model 52:1757–1768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Villalba ML, Palestro PH, Ceruso M et al (2016) Sulfamide derivatives with selective carbonic anhydrase VII inhibitory action. Bioorg Med Chem 24:894–901

    Article  CAS  PubMed  Google Scholar 

  87. Morris GM, Goodsell DS, Halliday RS et al (1998) Automated docking using a Lamarckian genetic algorithm and empirical binding free energy function. J Comput Chem 19:1639–1662

    Article  CAS  Google Scholar 

  88. Jude KM, Banerjee AL, Haldar MK et al (2006) Ultrahigh resolution crystal structures of human carbonic anhydrases I and II complexed with two-prong inhibitors reveal the molecular basis of high affinity. J Am Chem Soc 128:3011–3018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ugochukwu E, Shafqat N, Pilka E et al (to be published)

    Google Scholar 

  90. Case DA, Darden TA, Cheatham TE III et al (2010) AMBER 11. University of California, San Francisco

    Google Scholar 

  91. QuACPAC (2007) Quality atomic charges, proton assignment and canonicalization. OpenEye Scientific Software, Inc., Santa Fe, NM

    Google Scholar 

  92. Wang J, Wolf RM, Caldwell JW et al (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174

    Article  CAS  PubMed  Google Scholar 

  93. Frisch MJ, Trucks GW, Schlegel HB (2004) Gaussian 03, revision C.02. Gaussian, Inc., Wallingford, CT

    Google Scholar 

  94. Villalba ML, Enrique AV, Higgs J et al (2016) Novel sulfamides and sulfamates derived from amino esters: synthetic studies and anticonvulsant activity. Eur J Pharmacol 774:5–63. doi:10.1016/j.ejphar.2016.02.001

    Article  Google Scholar 

  95. Talevi A, Enrique AV, Bruno-Blanch LE (2012) Anticonvulsant activity of artificial sweeteners: a structural link between sweet-taste receptor T1R3 and brain glutamate receptors. Bioorg Med Chem Lett 22:4072–4074

    Article  CAS  PubMed  Google Scholar 

  96. Moeker J, Peat TS, Bornaghi LF et al (2014) Cyclic secondary sulfonamides: unusually good inhibitors of cancer-related carbonic anhydrase enzymes. J Med Chem 57:3522–3531

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciana Gavernet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Gavernet, L. (2016). Carbonic Anhydrase and Epilepsy. In: Talevi, A., Rocha, L. (eds) Antiepileptic Drug Discovery. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6355-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6355-3_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6353-9

  • Online ISBN: 978-1-4939-6355-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics