Skip to main content

High-Throughput, Liquid-Based Genome-Wide RNAi Screening in C. elegans

  • Protocol
  • First Online:
High-Throughput RNAi Screening

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1470))

Abstract

RNA interference (RNAi) is a process in which double-stranded RNA (dsRNA) molecules mediate the inhibition of gene expression. RNAi in C. elegans can be achieved by simply feeding animals with bacteria expressing dsRNA against the gene of interest. This “feeding” method has made it possible to conduct genome-wide RNAi experiments for the systematic knockdown and subsequent investigation of almost every single gene in the genome. Historically, these genome-scale RNAi screens have been labor and time intensive. However, recent advances in automated, high-throughput methodologies have allowed the development of more rapid and efficient screening protocols. In this report, we describe a fast and efficient, liquid-based method for genome-wide RNAi screening.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fraser AG, Kamath RS, Zipperlen P et al (2000) Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 408(6810):325–330. doi:10.1038/35042517

    Article  CAS  PubMed  Google Scholar 

  2. Kamath RS, Fraser AG, Dong Y et al (2003) Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421(6920):231–237. doi:10.1038/nature01278

    Article  CAS  PubMed  Google Scholar 

  3. Rual JF, Ceron J, Koreth J et al (2004) Toward improving Caenorhabditis elegans phenome mapping with an ORFeome-based RNAi library. Genome Res 14(10B):2162–2168. doi:10.1101/gr.2505604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hamilton B, Dong Y, Shindo M et al (2005) A systematic RNAi screen for longevity genes in C. elegans. Genes Dev 19(13):1544–1555. doi:10.1101/gad.1308205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lehner B, Tischler J, Fraser AG (2006) RNAi screens in Caenorhabditis elegans in a 96-well liquid format and their application to the systematic identification of genetic interactions. Nat Protoc 1(3):1617–1620. doi:10.1038/nprot.2006.245

    Article  CAS  PubMed  Google Scholar 

  6. Lejeune FX, Mesrob L, Parmentier F et al (2012) Large-scale functional RNAi screen in C. elegans identifies genes that regulate the dysfunction of mutant polyglutamine neurons. BMC Genomics 13:91. doi:10.1186/1471-2164-13-91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. O’Rourke EJ, Conery AL, Moy TI (2009) Whole-animal high-throughput screens: the C. elegans model. Methods Mol Biol 486:57–75. doi:10.1007/978-1-60327-545-3_5

    Article  PubMed  Google Scholar 

  8. Swierczek NA, Giles AC, Rankin CH et al (2011) High-throughput behavioral analysis in C. elegans. Nat Methods 8(7):592–598. doi:10.1038/nmeth.1625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Buckingham SD, Sattelle DB (2009) Fast, automated measurement of nematode swimming (thrashing) without morphometry. BMC Neurosci 10:84. doi:10.1186/1471-2202-10-84

    Article  PubMed  PubMed Central  Google Scholar 

  10. O’Reilly LP, Luke CJ, Perlmutter DH et al (2014) C. elegans in high-throughput drug discovery. Adv Drug Deliv Rev 69–70:247–253. doi:10.1016/j.addr.2013.12.001

    Article  PubMed  Google Scholar 

  11. Gosai SJ, Kwak JH, Luke CJ et al (2010) Automated high-content live animal drug screening using C. elegans expressing the aggregation prone serpin α1-antitrypsin Z. PLoS One 5(11):e15460. doi:10.1371/journal.pone.0015460

    Article  PubMed  PubMed Central  Google Scholar 

  12. Long OS, Gosai SJ, Kwak JH et al (2011) Using Caenorhabditis elegans to study serpinopathies. Methods Enzymol 499:259–281. doi:10.1016/B978-0-12-386471-0.00013-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. O’Reilly LP, Long OS, Cobanoglu MC et al (2014) A genome-wide RNAi screen identifies potential drug targets in a C. elegans model of alpha1-antitrypsin deficiency. Hum Mol Genet 23(19):5123–5132. doi:10.1093/hmg/ddu236

    Article  PubMed  PubMed Central  Google Scholar 

  14. Benson JA, Cummings EE, O’Reilly LP et al (2014) A high-content assay for identifying small molecules that reprogram C. elegans germ cell fate. Methods 68(3):529–535. doi:10.1016/j.ymeth.2014.05.011

    Article  CAS  PubMed  Google Scholar 

  15. Leung CK, Deonarine A, Strange K et al. High-throughput screening and biosensing with fluorescent C. elegans strains. J Vis Exp. 2011;(51). doi:10.3791/2745

  16. Hamamichi S, Rivas RN, Knight AL et al (2008) Hypothesis-based RNAi screening identifies neuroprotective genes in a Parkinson’s disease model. Proc Natl Acad Sci U S A 105(2):728–733. doi:10.1073/pnas.0711018105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Morley JF, Brignull HR, Weyers JJ et al (2002) The threshold for polyglutamine-expansion protein aggregation and cellular toxicity is dynamic and influenced by aging in Caenorhabditis elegans. Proc Natl Acad Sci U S A 99(16):10417–10422. doi:10.1073/pnas.152161099

    Article  PubMed  PubMed Central  Google Scholar 

  18. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77(1):71–94

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Birmingham A, Selfors LM, Forster T et al (2009) Statistical methods for analysis of high-throughput RNA interference screens. Nat Methods 6(8):569–575, doi:nmeth.1351 [pii] 10.1038/nmeth.1351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shaye DD, Greenwald I (2011) OrthoList: a compendium of C. elegans genes with human orthologs. PLoS One 6(5):e20085. doi:10.1371/journal.pone.0020085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. da Huang W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57. doi:10.1038/nprot.2008.211

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by a grant from the National Institutes of Health (DK096990) to GAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen C. Pak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

O’Reilly, L.P., Knoerdel, R.R., Silverman, G.A., Pak, S.C. (2016). High-Throughput, Liquid-Based Genome-Wide RNAi Screening in C. elegans . In: Azorsa, D., Arora, S. (eds) High-Throughput RNAi Screening. Methods in Molecular Biology, vol 1470. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6337-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6337-9_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6335-5

  • Online ISBN: 978-1-4939-6337-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics