Skip to main content

Photochemical Models of Focal Brain Ischemia

  • Protocol
  • First Online:
Rodent Models of Stroke

Part of the book series: Neuromethods ((NM,volume 120))

Abstract

The photochemical stroke model has a number of advantages: size and location can be exactly determined, the skull does not have to be opened, the model works in rats and mice, and technical variations allow for the induction of subcortical stroke, stroke in newborn animals, or stroke with a penumbra. With photochemical reactions, thrombotic occlusions of large arteries as well as of small penetrating brain arteries may also be produced. However, the model does differ in some aspects from stroke in humans. We herein describe techniques for inducing these stroke models and discuss their potential limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Watson BD, Dietrich WD, Busto R, Wachtel MS, Ginsberg MD (1985) Induction of reproducible brain infarction by photochemically initiated thrombosis. Ann Neurol 17(5):497–504. doi:10.1002/ana.410170513

    Article  CAS  PubMed  Google Scholar 

  2. Wester P, Watson BD, Prado R, Dietrich WD (1995) A photothrombotic ‘ring’ model of rat stroke-in-evolution displaying putative penumbral inversion. Stroke 26(3):444–450

    Article  CAS  PubMed  Google Scholar 

  3. Nishimura N, Schaffer CB, Friedman B, Lyden PD, Kleinfeld D (2007) Penetrating arterioles are a bottleneck in the perfusion of neocortex. Proc Natl Acad Sci U S A 104(1):365–370. doi:10.1073/pnas.0609551104

    Article  CAS  PubMed  Google Scholar 

  4. Schaffer CB, Friedman B, Nishimura N, Schroeder LF, Tsai PS, Ebner FF, Lyden PD, Kleinfeld D (2006) Two-photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion. PLoS Biol 4(2), e22. doi:10.1371/journal.pbio.0040022

    Article  PubMed  Google Scholar 

  5. Zhang S, Murphy TH (2007) Imaging the impact of cortical microcirculation on synaptic structure and sensory-evoked hemodynamic responses in vivo. PLoS Biol 5(5), e119. doi:10.1371/journal.pbio.0050119

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kuroiwa T, Xi G, Hua Y, Nagaraja TN, Fenstermacher JD, Keep RF (2009) Development of a rat model of photothrombotic ischemia and infarction within the caudoputamen. Stroke 40(1):248–253. doi:10.1161/STROKEAHA.108.527853

    Article  PubMed  Google Scholar 

  7. Lozano JD, Abulafia DP, Danton GH, Watson BD, Dietrich WD (2007) Characterization of a thromboembolic photochemical model of repeated stroke in mice. J Neurosci Methods 162(1–2):244–254. doi:10.1016/j.jneumeth.2007.01.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tseng SC, Feenstra RP, Watson BD (1994) Characterization of photodynamic actions of Rose Bengal on cultured cells. Invest Ophthalmol Vis Sci 35(8):3295–3307

    CAS  PubMed  Google Scholar 

  9. Watson BD, Dietrich WD (1990) Animal models in stroke. Stroke 21(9):1376–1377

    CAS  PubMed  Google Scholar 

  10. Nakayama H, Dietrich WD, Watson BD, Busto R, Ginsberg MD (1988) Photothrombotic occlusion of rat middle cerebral artery: histopathological and hemodynamic sequelae of acute recanalization. J Cereb Blood Flow Metab 8(3):357–366

    Article  CAS  PubMed  Google Scholar 

  11. Dietrich WD, Busto R, Watson BD, Scheinberg P, Ginsberg MD (1987) Photochemically induced cerebral infarction. II. Edema and blood-brain barrier disruption. Acta Neuropathol 72(4):326–334

    Article  CAS  PubMed  Google Scholar 

  12. Dietrich WD, Watson BD, Busto R, Ginsberg MD, Bethea JR (1987) Photochemically induced cerebral infarction. I. Early microvascular alterations. Acta Neuropathol 72(4):315–325

    Article  CAS  PubMed  Google Scholar 

  13. Dietrich WD, Ginsberg MD, Busto R, Watson BD (1986) Photochemically induced cortical infarction in the rat. 2. Acute and subacute alterations in local glucose utilization. J Cereb Blood Flow Metab 6(2):195–202

    Article  CAS  PubMed  Google Scholar 

  14. Dietrich WD, Ginsberg MD, Busto R, Watson BD (1986) Photochemically induced cortical infarction in the rat. 1. Time course of hemodynamic consequences. J Cereb Blood Flow Metab 6(2):184–194

    Article  CAS  PubMed  Google Scholar 

  15. Inamo J, Belougne E, Doutremepuich C (1996) Importance of photo activation of Rose Bengal for platelet activation in experimental models of photochemically induced thrombosis. Thromb Res 83(3):229–235

    Article  CAS  PubMed  Google Scholar 

  16. Kleinschnitz C, Braeuninger S, Pham M, Austinat M, Nolte I, Renne T, Nieswandt B, Bendszus M, Stoll G (2008) Blocking of platelets or intrinsic coagulation pathway-driven thrombosis does not prevent cerebral infarctions induced by photothrombosis. Stroke 39(4):1262–1268. doi:10.1161/STROKEAHA.107.496448

    Article  PubMed  Google Scholar 

  17. Jourdan A, Aguejouf O, Imbault P, Doutremepuich F, Inamo J, Doutremepuich C (1995) Experimental thrombosis model induced by free radicals. Application to aspirin and other different substances. Thromb Res 79(1):109–123

    Article  CAS  PubMed  Google Scholar 

  18. Stoll G, Kleinschnitz C, Meuth SG, Braeuninger S, Ip CW, Wessig C, Nolte I, Bendszus M (2009) Transient widespread blood-brain barrier alterations after cerebral photothrombosis as revealed by gadofluorine M-enhanced magnetic resonance imaging. J Cereb Blood Flow Metab 29(2):331–341. doi:10.1038/jcbfm.2008.129

    Article  CAS  PubMed  Google Scholar 

  19. Piao MS, Lee JK, Park CS, Ryu HS, Kim SH, Kim HS (2009) Early activation of matrix metalloproteinase-9 is associated with blood-brain barrier disruption after photothrombotic cerebral ischemia in rats. Acta Neurochir (Wien). doi:10.1007/s00701-009-0431-1

    Google Scholar 

  20. Keiner S, Witte OW, Redecker C (2009) Immunocytochemical detection of newly generated neurons in the perilesional area of cortical infarcts after intraventricular application of brain-derived neurotrophic factor. J Neuropathol Exp Neurol 68(1):83–93. doi:10.1097/NEN.0b013e31819308e9

    Article  CAS  PubMed  Google Scholar 

  21. Nowicka D, Rogozinska K, Aleksy M, Witte OW, Skangiel-Kramska J (2008) Spatiotemporal dynamics of astroglial and microglial responses after photothrombotic stroke in the rat brain. Acta Neurobiol Exp (Wars) 68(2):155–168

    Google Scholar 

  22. Keiner S, Wurm F, Kunze A, Witte OW, Redecker C (2008) Rehabilitative therapies differentially alter proliferation and survival of glial cell populations in the perilesional zone of cortical infarcts. Glia 56(5):516–527. doi:10.1002/glia.20632

    Article  PubMed  Google Scholar 

  23. Jablonka JA, Witte OW, Kossut M (2007) Photothrombotic infarct impairs experience-dependent plasticity in neighboring cortex. Neuroreport 18(2):165–169. doi:10.1097/WNR.0b013e328010feff

    Article  PubMed  Google Scholar 

  24. Shanina EV, Schallert T, Witte OW, Redecker C (2006) Behavioral recovery from unilateral photothrombotic infarcts of the forelimb sensorimotor cortex in rats: role of the contralateral cortex. Neuroscience 139(4):1495–1506. doi:10.1016/j.neuroscience.2006.01.016

    Article  CAS  PubMed  Google Scholar 

  25. Reinecke S, Dinse HR, Reinke H, Witte OW (2003) Induction of bilateral plasticity in sensory cortical maps by small unilateral cortical infarcts in rats. Eur J Neurosci 17(3):623–627

    Article  CAS  PubMed  Google Scholar 

  26. Redecker C, Wang W, Fritschy JM, Witte OW (2002) Widespread and long-lasting alterations in GABA(A)-receptor subtypes after focal cortical infarcts in rats: mediation by NMDA-dependent processes. J Cereb Blood Flow Metab 22(12):1463–1475. doi:10.1097/00004647-200212000-00007

    Article  CAS  PubMed  Google Scholar 

  27. Keyvani K, Witte OW, Paulus W (2002) Gene expression profiling in perilesional and contralateral areas after ischemia in rat brain. J Cereb Blood Flow Metab 22(2):153–160. doi:10.1097/00004647-200202000-00003

    Article  CAS  PubMed  Google Scholar 

  28. Schiene K, Bruehl C, Zilles K, Qu M, Hagemann G, Kraemer M, Witte OW (1996) Neuronal hyperexcitability and reduction of GABAA-receptor expression in the surround of cerebral photothrombosis. J Cereb Blood Flow Metab 16(5):906–914. doi:10.1097/00004647-199609000-00014

    Article  CAS  PubMed  Google Scholar 

  29. Buchkremer-Ratzmann I, August M, Hagemann G, Witte OW (1996) Electrophysiological transcortical diaschisis after cortical photothrombosis in rat brain. Stroke 27(6):1105–1109, discussion 1109-1111

    Article  CAS  PubMed  Google Scholar 

  30. Ding S, Wang T, Cui W, Haydon PG (2009) Photothrombosis ischemia stimulates a sustained astrocytic Ca2+ signaling in vivo. Glia 57(7):767–776. doi:10.1002/glia.20804

    Article  PubMed  PubMed Central  Google Scholar 

  31. Karhunen H, Bezvenyuk Z, Nissinen J, Sivenius J, Jolkkonen J, Pitkanen A (2007) Epileptogenesis after cortical photothrombotic brain lesion in rats. Neuroscience 148(1):314–324. doi:10.1016/j.neuroscience.2007.05.047

    Article  CAS  PubMed  Google Scholar 

  32. Klaassen CD (1976) Pharmacokinetics of Rose Bengal in the rat, rabbit, dog and guinea pig. Toxicol Appl Pharmacol 38(1):85–100

    Article  CAS  PubMed  Google Scholar 

  33. Greifzu F, Schmidt S, Schmidt KF, Kreikemeier K, Witte OW, Lowel S (2011) Global impairment and therapeutic restoration of visual plasticity mechanisms after a localized cortical stroke. Proc Natl Acad Sci U S A 108(37):15450–15455. doi:10.1073/pnas.1016458108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Labat-gest V, Tomasi S (2013) Photothrombotic ischemia: a minimally invasive and reproducible photochemical cortical lesion model for mouse stroke studies. J Vis Exp (76). doi:10.3791/50370

  35. Brown CE, Aminoltejari K, Erb H, Winship IR, Murphy TH (2009) In vivo voltage-sensitive dye imaging in adult mice reveals that somatosensory maps lost to stroke are replaced over weeks by new structural and functional circuits with prolonged modes of activation within both the peri-infarct zone and distant sites. J Neurosci 29(6):1719–1734. doi:10.1523/JNEUROSCI.4249-08.2009

    Article  CAS  PubMed  Google Scholar 

  36. Barth AM, Mody I (2011) Changes in hippocampal neuronal activity during and after unilateral selective hippocampal ischemia in vivo. J Neurosci 31(3):851–860. doi:10.1523/JNEUROSCI.5080-10.2011

    Article  CAS  PubMed  Google Scholar 

  37. Cha JH, Wee HJ, Seo JH, Ahn BJ, Park JH, Yang JM, Lee SW, Kim EH, Lee OH, Heo JH, Lee HJ, Gelman IH, Arai K, Lo EH, Kim KW (2014) AKAP12 mediates barrier functions of fibrotic scars during CNS repair. PLoS One 9(4), e94695. doi:10.1371/journal.pone.0094695

    Article  PubMed  PubMed Central  Google Scholar 

  38. Cybulska-Klosowicz A, Liguz-Lecznar M, Nowicka D, Ziemka-Nalecz M, Kossut M, Skangiel-Kramska J (2011) Matrix metalloproteinase inhibition counteracts impairment of cortical experience-dependent plasticity after photothrombotic stroke. Eur J Neurosci 33(12):2238–2246. doi:10.1111/j.1460-9568.2011.07713.x

    Article  CAS  PubMed  Google Scholar 

  39. Kim GW, Sugawara T, Chan PH (2000) Involvement of oxidative stress and caspase-3 in cortical infarction after photothrombotic ischemia in mice. J Cereb Blood Flow Metab 20(12):1690–1701. doi:10.1097/00004647-200012000-00008

    Article  CAS  PubMed  Google Scholar 

  40. Jander S, Kraemer M, Schroeter M, Witte OW, Stoll G (1995) Lymphocytic infiltration and expression of intercellular adhesion molecule-1 in photochemically induced ischemia of the rat cortex. J Cereb Blood Flow Metab 15(1):42–51. doi:10.1038/jcbfm.1995.5

    Article  CAS  PubMed  Google Scholar 

  41. Schroeter M, Jander S, Witte OW, Stoll G (1999) Heterogeneity of the microglial response in photochemically induced focal ischemia of the rat cerebral cortex. Neuroscience 89(4):1367–1377

    Article  CAS  Google Scholar 

  42. Schroeter M, Kury P, Jander S (2003) Inflammatory gene expression in focal cortical brain ischemia: differences between rats and mice. Brain Res Mol Brain Res 117(1):1–7

    Article  CAS  PubMed  Google Scholar 

  43. Carmichael ST (2005) Rodent models of focal stroke: size, mechanism, and purpose. NeuroRx 2(3):396–409

    Article  PubMed  PubMed Central  Google Scholar 

  44. Gu W, Jiang W, Wester P (1999) A photothrombotic ring stroke model in rats with sustained hypoperfusion followed by late spontaneous reperfusion in the region at risk. Exp Brain Res 125(2):163–170

    Article  CAS  PubMed  Google Scholar 

  45. Jiang W, Gu W, Hossmann KA, Mies G, Wester P (2006) Establishing a photothrombotic ‘ring’ stroke model in adult mice with late spontaneous reperfusion: quantitative measurements of cerebral blood flow and cerebral protein synthesis. J Cereb Blood Flow Metab 26(7):927–936. doi:10.1038/sj.jcbfm.9600245

    Article  CAS  PubMed  Google Scholar 

  46. Maxwell KA, Dyck RH (2005) Induction of reproducible focal ischemic lesions in neonatal mice by photothrombosis. Dev Neurosci 27(2-4):121–126. doi:10.1159/000085983

    Article  CAS  PubMed  Google Scholar 

  47. Kim HS, Kim D, Kim RG, Kim JM, Chung E, Neto PR, Lee MC, Kim HI (2014) A rat model of photothrombotic capsular infarct with a marked motor deficit: a behavioral, histologic, and microPET study. J Cereb Blood Flow Metab 34(4):683–689. doi:10.1038/jcbfm.2014.2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dietrich WD, Prado R, Watson BD, Nakayama H (1988) Middle cerebral artery thrombosis: acute blood-brain barrier consequences. J Neuropathol Exp Neurol 47(4):443–451

    Article  CAS  PubMed  Google Scholar 

  49. Futrell N, Watson BD, Dietrich WD, Prado R, Millikan C, Ginsberg MD (1988) A new model of embolic stroke produced by photochemical injury to the carotid artery in the rat. Ann Neurol 23(3):251–257. doi:10.1002/ana.410230307

    Article  CAS  PubMed  Google Scholar 

  50. Sigler A, Goroshkov A, Murphy TH (2008) Hardware and methodology for targeting single brain arterioles for photothrombotic stroke on an upright microscope. J Neurosci Methods 170(1):35–44. doi:10.1016/j.jneumeth.2007.12.015

    Article  PubMed  Google Scholar 

  51. Shih AY, Blinder P, Tsai PS, Friedman B, Stanley G, Lyden PD, Kleinfeld D (2013) The smallest stroke: occlusion of one penetrating vessel leads to infarction and a cognitive deficit. Nat Neurosci 16(1):55–63. doi:10.1038/nn.3278

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anja Urbach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Urbach, A., Witte, O.W. (2016). Photochemical Models of Focal Brain Ischemia. In: Dirnagl, U. (eds) Rodent Models of Stroke. Neuromethods, vol 120. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-5620-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-5620-3_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-5618-0

  • Online ISBN: 978-1-4939-5620-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics