Skip to main content

fMRI in Neurodegenerative Diseases: From Scientific Insights to Clinical Applications

  • Protocol
  • First Online:
Book cover fMRI Techniques and Protocols

Part of the book series: Neuromethods ((NM,volume 119))

Abstract

fMRI is a technology with great promise as a tool to probe abnormalities of brain activity in neurodegenerative diseases. The detection of functional brain abnormalities may be useful, in the appropriate clinical context, for early diagnosis, differential diagnosis, or prognostication. Prediction of response to treatment or therapeutic monitoring may also be possible with fMRI. In addition, fMRI has the potential to provide a variety of scientific insights that may have clinical relevance, including compensatory hyperactivation of brain circuits or genetic modulation of functional brain activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Perry D et al (2015) Building a roadmap for developing combination therapies for Alzheimer’s disease. Expert Rev Neurother 15(3):327–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Selkoe DJ (2013) The therapeutics of Alzheimer’s disease: where we stand and where we are heading. Ann Neurol 74(3):328–336

    Article  CAS  PubMed  Google Scholar 

  3. DeKosky ST, Marek K (2003) Looking backward to move forward: early detection of neurodegenerative disorders. Science 302(5646):830–834

    Article  CAS  PubMed  Google Scholar 

  4. Selkoe DJ (2002) Alzheimer’s disease is a synaptic failure. Science 298(5594):789–791

    Article  CAS  PubMed  Google Scholar 

  5. Coleman P, Federoff H, Kurlan R (2004) A focus on the synapse for neuroprotection in Alzheimer disease and other dementias. Neurology 63(7):1155–1162

    Article  PubMed  Google Scholar 

  6. Dickerson BC, Atri A (2014) Dementia: comprehensive principles and practice. Oxford University Press, New York

    Book  Google Scholar 

  7. Dickerson BC (2015) Hodges’ frontotemporal dementia, 2nd edn. Cambridge University Press, Cambridge, UK

    Google Scholar 

  8. Sperling RA, Jack CR Jr, Aisen PS (2011) Testing the right target and right drug at the right stage. Sci Transl Med 3(111):111cm33

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sperling RA et al (2011) Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging and the Alzheimer’s Association workgroup. Alzheimers Dement 7(3):280–292

    Article  PubMed  PubMed Central  Google Scholar 

  10. Albert MS et al (2011) The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7(3):270–279

    Article  PubMed  PubMed Central  Google Scholar 

  11. McKhann GM et al (2011) The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging and the Alzheimer’s Association workgroup. Alzheimers Dement 7(3):263–269

    Article  PubMed  PubMed Central  Google Scholar 

  12. Boxer AL et al (2013) The advantages of frontotemporal degeneration drug development (part 2 of frontotemporal degeneration: the next therapeutic frontier). Alzheimers Dement 9(2):189–198

    Article  PubMed  Google Scholar 

  13. Paulsen JS et al (2014) Clinical and biomarker changes in premanifest Huntington disease show trial feasibility: a decade of the PREDICT-HD study. Front Aging Neurosci 6:78

    Article  PubMed  PubMed Central  Google Scholar 

  14. Mills SM et al (2013) Preclinical trials in autosomal dominant AD: implementation of the DIAN-TU trial. Rev Neurol (Paris) 169(10):737–743

    Article  CAS  Google Scholar 

  15. Petersen RC et al (1999) Mild cognitive impairment: clinical characterization and outcome. Arch Neurol 56(3):303–308

    Article  CAS  PubMed  Google Scholar 

  16. Grundman M et al (2004) Mild cognitive impairment can be distinguished from Alzheimer disease and normal aging for clinical trials. Arch Neurol 61(1):59–66

    Article  PubMed  Google Scholar 

  17. Sperling R, Mormino E, Johnson K (2014) The evolution of preclinical Alzheimer’s disease: implications for prevention trials. Neuron 84(3):608–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dickerson BC et al (2007) Prefrontal-hippocampal-fusiform activity during encoding predicts intraindividual differences in free recall ability: an event-related functional-anatomic MRI study. Hippocampus 17(11):1060–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Touroutoglou A et al (2014) Amygdala task-evoked activity and task-free connectivity independently contribute to feelings of arousal. Hum Brain Mapp 35(10):5316–5327

    Article  PubMed  PubMed Central  Google Scholar 

  20. Brewer JB et al (1998) Making memories: brain activity that predicts how well visual experience will be remembered. Science 281(5380):1185–1187

    Article  CAS  PubMed  Google Scholar 

  21. Kirchhoff BA et al (2000) Prefrontal-temporal circuitry for episodic encoding and subsequent memory. J Neurosci 20(16):6173–6180

    CAS  PubMed  Google Scholar 

  22. Wagner AD et al (1998) Building memories: remembering and forgetting of verbal experiences as predicted by brain activity. Science 281(5380):1188–1191

    Article  CAS  PubMed  Google Scholar 

  23. Daselaar SM et al (2003) Neuroanatomical correlates of episodic encoding and retrieval in young and elderly subjects. Brain 126(Pt 1):43–56

    Article  CAS  PubMed  Google Scholar 

  24. Sperling R et al (2003) Putting names to faces: successful encoding of associative memories activates the anterior hippocampal formation. Neuroimage 20(2):1400–1410

    Article  PubMed  PubMed Central  Google Scholar 

  25. Price CJ, Friston KJ (1999) Scanning patients with tasks they can perform. Hum Brain Mapp 8(2–3):102–108

    Article  CAS  PubMed  Google Scholar 

  26. Dickerson BC et al (2004) Medial temporal lobe function and structure in mild cognitive impairment. Ann Neurol 56(1):27–35

    Article  PubMed  PubMed Central  Google Scholar 

  27. Grady CL et al (2003) Evidence from functional neuroimaging of a compensatory prefrontal network in Alzheimer’s disease. J Neurosci 23(3):986–993

    CAS  PubMed  Google Scholar 

  28. Bennett CM, Miller MB (2013) fMRI reliability: influences of task and experimental design. Cogn Affect Behav Neurosci 13(4):690–702

    Article  PubMed  Google Scholar 

  29. Brandt DJ et al (2013) Test-retest reliability of fMRI brain activity during memory encoding. Front Psychiatry 4:163

    Article  PubMed  PubMed Central  Google Scholar 

  30. Brown GG et al (2011) Multisite reliability of cognitive BOLD data. Neuroimage 54(3):2163–2175

    Article  PubMed  Google Scholar 

  31. Cao H et al (2014) Test-retest reliability of fMRI-based graph theoretical properties during working memory, emotion processing, and resting state. Neuroimage 84:888–900

    Article  PubMed  Google Scholar 

  32. Chase HW et al (2015) Accounting for dynamic fluctuations across time when examining fMRI test-retest reliability: analysis of a reward paradigm in the EMBARC study. PLoS One 10(5):e0126326

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. de Bertoldi F et al (2015) Improving the reliability of single-subject fMRI by weighting intra-run variability. Neuroimage 114:287–293

    Article  PubMed  Google Scholar 

  34. Frassle S et al (2015) Test-retest reliability of dynamic causal modeling for fMRI. Neuroimage 117:56–66

    Article  PubMed  Google Scholar 

  35. Gee DG et al (2015) Reliability of an fMRI paradigm for emotional processing in a multisite longitudinal study. Hum Brain Mapp 36(7):2558–2579

    Article  PubMed  PubMed Central  Google Scholar 

  36. Golestani AM et al (2015) Mapping the end-tidal CO2 response function in the resting-state BOLD fMRI signal: spatial specificity, test-retest reliability and effect of fMRI sampling rate. Neuroimage 104:266–277

    Article  PubMed  Google Scholar 

  37. Lukasova K et al (2014) Test-retest reliability of fMRI activation generated by different saccade tasks. J Magn Reson Imaging 40(1):37–46

    Article  PubMed  Google Scholar 

  38. McGonigle DJ (2012) Test-retest reliability in fMRI: or how I learned to stop worrying and love the variability. Neuroimage 62(2):1116–1120

    Article  PubMed  Google Scholar 

  39. Plichta MM et al (2012) Test-retest reliability of evoked BOLD signals from a cognitive-emotive fMRI test battery. Neuroimage 60(3):1746–1758

    Article  PubMed  Google Scholar 

  40. Aurich NK et al (2015) Evaluating the reliability of different preprocessing steps to estimate graph theoretical measures in resting state fMRI data. Front Neurosci 9:48

    Article  PubMed  PubMed Central  Google Scholar 

  41. Birn RM et al (2013) The effect of scan length on the reliability of resting-state fMRI connectivity estimates. Neuroimage 83:550–558

    Article  PubMed  PubMed Central  Google Scholar 

  42. Braun U et al (2012) Test-retest reliability of resting-state connectivity network characteristics using fMRI and graph theoretical measures. Neuroimage 59(2):1404–1412

    Article  PubMed  Google Scholar 

  43. Patriat R et al (2013) The effect of resting condition on resting-state fMRI reliability and consistency: a comparison between resting with eyes open, closed, and fixated. Neuroimage 78:463–473

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wisner KM et al (2013) Neurometrics of intrinsic connectivity networks at rest using fMRI: retest reliability and cross-validation using a meta-level method. Neuroimage 76:236–251

    Article  PubMed  Google Scholar 

  45. Atri A et al (2011) Test-retest reliability of memory task functional magnetic resonance imaging in Alzheimer disease clinical trials. Arch Neurol 68(5):599–606

    Article  PubMed  PubMed Central  Google Scholar 

  46. Turner JA et al (2012) Reliability of the amplitude of low-frequency fluctuations in resting state fMRI in chronic schizophrenia. Psychiatry Res 201(3):253–255

    Article  PubMed  PubMed Central  Google Scholar 

  47. Eaton KP et al (2008) Reliability of fMRI for studies of language in post-stroke aphasia subjects. Neuroimage 41(2):311–322

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kurland J et al (2004) Test-retest reliability of fMRI during nonverbal semantic decisions in moderate-severe nonfluent aphasia patients. Behav Neurol 15(3–4):87–97

    Article  PubMed  PubMed Central  Google Scholar 

  49. Clement F, Belleville S (2009) Test-retest reliability of fMRI verbal episodic memory paradigms in healthy older adults and in persons with mild cognitive impairment. Hum Brain Mapp 30(12):4033–4047

    Article  PubMed  Google Scholar 

  50. Zanto TP, Pa J, Gazzaley A (2014) Reliability measures of functional magnetic resonance imaging in a longitudinal evaluation of mild cognitive impairment. Neuroimage 84:443–452

    Article  PubMed  Google Scholar 

  51. Poudel GR et al (2015) Functional changes during working memory in Huntington’s disease: 30-month longitudinal data from the IMAGE-HD study. Brain Struct Funct 220(1):501–512

    Article  PubMed  Google Scholar 

  52. O’Brien JL et al (2010) Longitudinal fMRI in elderly reveals loss of hippocampal activation with clinical decline. Neurology 74(24):1969–1976

    Article  PubMed  PubMed Central  Google Scholar 

  53. Scheller E et al (2014) Attempted and successful compensation in preclinical and early manifest neurodegeneration—a review of task FMRI studies. Front Psychiatry 5:132

    Article  PubMed  PubMed Central  Google Scholar 

  54. Buckner RL et al (2000) Functional brain imaging of young, nondemented, and demented older adults. J Cogn Neurosci 12(Suppl 2):24–34

    Article  PubMed  Google Scholar 

  55. D’Esposito M, Deouell LY, Gazzaley A (2003) Alterations in the BOLD fMRI signal with ageing and disease: a challenge for neuroimaging. Nat Rev Neurosci 4(11):863–872

    Article  PubMed  CAS  Google Scholar 

  56. Grossman M et al (2003) Neural basis for verb processing in Alzheimer’s disease: an fMRI study. Neuropsychology 17(4):658–674

    Article  PubMed  Google Scholar 

  57. Johnson SC et al (2000) The relationship between fMRI activation and cerebral atrophy: comparison of normal aging and Alzheimer disease. Neuroimage 11(3):179–187

    Article  CAS  PubMed  Google Scholar 

  58. Saykin AJ et al (1999) Neuroanatomic substrates of semantic memory impairment in Alzheimer’s disease: patterns of functional MRI activation. J Int Neuropsychol Soc 5(5):377–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Grossman M et al (2003) Neural basis for semantic memory difficulty in Alzheimer’s disease: an fMRI study. Brain 126(Pt 2):292–311

    Article  PubMed  Google Scholar 

  60. Woodard JL et al (2009) Semantic memory activation in amnestic mild cognitive impairment. Brain 132(Pt 8):2068–2078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Thulborn KR, Martin C, Voyvodic JT (2000) Functional MR imaging using a visually guided saccade paradigm for comparing activation patterns in patients with probable Alzheimer’s disease and in cognitively able elderly volunteers. AJNR Am J Neuroradiol 21(3):524–531

    CAS  PubMed  Google Scholar 

  62. Golden HL et al (2015) Functional neuroanatomy of auditory scene analysis in Alzheimer’s disease. Neuroimage Clin 7:699–708

    Article  PubMed  PubMed Central  Google Scholar 

  63. Kato T, Knopman D, Liu H (2001) Dissociation of regional activation in mild AD during visual encoding: a functional MRI study. Neurology 57(5):812–816

    Article  CAS  PubMed  Google Scholar 

  64. Machulda MM et al (2003) Comparison of memory fMRI response among normal, MCI, and Alzheimer’s patients. Neurology 61(4):500–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Rombouts SA et al (2000) Functional MR imaging in Alzheimer’s disease during memory encoding. AJNR Am J Neuroradiol 21(10):1869–1875

    CAS  PubMed  Google Scholar 

  66. Small SA et al (1999) Differential regional dysfunction of the hippocampal formation among elderly with memory decline and Alzheimer’s disease. Ann Neurol 45(4):466–472

    Article  CAS  PubMed  Google Scholar 

  67. Sperling RA et al (2003) fMRI studies of associative encoding in young and elderly controls and mild Alzheimer’s disease. J Neurol Neurosurg Psychiatry 74(1):44–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Schwindt GC, Black SE (2009) Functional imaging studies of episodic memory in Alzheimer’s disease: a quantitative meta-analysis. Neuroimage 45(1):181–190

    Article  PubMed  Google Scholar 

  69. Rombouts SARB et al (2005) Delayed rather than decreased BOLD response as a marker for early Alzheimer’s disease. Neuroimage 26(4):1078–1085

    Article  PubMed  Google Scholar 

  70. Dickerson BC et al (2005) Increased hippocampal activation in mild cognitive impairment compared to normal aging and AD. Neurology 65(3):404–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Johnson SC et al (2006) Activation of brain regions vulnerable to Alzheimer’s disease: the effect of mild cognitive impairment. Neurobiol Aging 27(11):1604–1612

    Article  CAS  PubMed  Google Scholar 

  72. Johnson SC et al (2004) Hippocampal adaptation to face repetition in healthy elderly and mild cognitive impairment. Neuropsychologia 42(7):980–989

    Article  PubMed  Google Scholar 

  73. Petrella JR et al (2006) Mild cognitive impairment: evaluation with 4-T functional MR imaging. Radiology 240(1):177–186

    Article  PubMed  Google Scholar 

  74. Hamalainen A et al (2007) Increased fMRI responses during encoding in mild cognitive impairment. Neurobiol Aging 28(12):1889–1903

    Article  PubMed  Google Scholar 

  75. Kircher T et al (2007) Hippocampal activation in MCI patients is necessary for successful memory encoding. J Neurol Neurosurg Psychiatry 78(8):812–818

    Article  PubMed  PubMed Central  Google Scholar 

  76. Dickerson BC, Sperling RA (2008) Functional abnormalities of the medial temporal lobe memory system in mild cognitive impairment and Alzheimer’s disease: insights from functional MRI studies. Neuropsychologia 46(6):1624–1635

    Article  PubMed  Google Scholar 

  77. Dickerson BC, Sperling RA (2009) Large-scale functional brain network abnormalities in Alzheimer’s disease: insights from functional neuroimaging. Behav Neurol 21(1):63–75

    Article  PubMed  PubMed Central  Google Scholar 

  78. Petrella JR et al (2007) Cortical deactivation in mild cognitive impairment: high-field-strength functional MR imaging. Radiology 245(1):224–235

    Article  PubMed  Google Scholar 

  79. Vandenbulcke M et al (2007) Word reading and posterior temporal dysfunction in amnestic mild cognitive impairment. Cereb Cortex 17(3):542–551

    Article  PubMed  Google Scholar 

  80. Vannini P et al (2012) Age and amyloid-related alterations in default network habituation to stimulus repetition. Neurobiol Aging 33(7):1237–1252

    Article  CAS  PubMed  Google Scholar 

  81. Vannini P et al (2013) The ups and downs of the posteromedial cortex: age- and amyloid-related functional alterations of the encoding/retrieval flip in cognitively normal older adults. Cereb Cortex 23(6):1317–1328

    Article  PubMed  Google Scholar 

  82. Sperling RA et al (2009) Amyloid deposition is associated with impaired default network function in older persons without dementia. Neuron 63(2):178–188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kennedy KM et al (2012) Effects of beta-amyloid accumulation on neural function during encoding across the adult lifespan. Neuroimage 62(1):1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hedden T et al (2012) Failure to modulate attentional control in advanced aging linked to white matter pathology. Cereb Cortex 22(5):1038–1051

    Article  PubMed  Google Scholar 

  85. Mormino EC et al (2012) Abeta Deposition in aging is associated with increases in brain activation during successful memory encoding. Cereb Cortex 22(8):1813–1823

    Article  PubMed  Google Scholar 

  86. Villemagne VL et al (2015) Tau imaging: early progress and future directions. Lancet Neurol 14(1):114–124

    Article  PubMed  Google Scholar 

  87. Virani K et al (2013) Functional neural correlates of emotional expression processing deficits in behavioural variant frontotemporal dementia. J Psychiatry Neurosci 38(3):174–182

    Article  PubMed  PubMed Central  Google Scholar 

  88. Agustus JL et al (2015) Functional MRI of music emotion processing in frontotemporal dementia. Ann N Y Acad Sci 1337:232–240

    Article  PubMed  PubMed Central  Google Scholar 

  89. Chiong W et al (2013) The salience network causally influences default mode network activity during moral reasoning. Brain 136(Pt 6):1929–1941

    Article  PubMed  PubMed Central  Google Scholar 

  90. Sonty SP et al (2003) Primary progressive aphasia: PPA and the language network. Ann Neurol 53(1):35–49

    Article  PubMed  Google Scholar 

  91. Sonty SP et al (2007) Altered effective connectivity within the language network in primary progressive aphasia. J Neurosci 27(6):1334–1345

    Article  CAS  PubMed  Google Scholar 

  92. Wilson SM et al (2010) Neural correlates of syntactic processing in the nonfluent variant of primary progressive aphasia. J Neurosci 30(50):16845–16854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Vandenbulcke M et al (2005) Anterior temporal laterality in primary progressive aphasia shifts to the right. Ann Neurol 58(3):362–370

    Article  PubMed  Google Scholar 

  94. Nelissen N et al (2011) Right hemisphere recruitment during language processing in frontotemporal lobar degeneration and Alzheimer’s disease. J Mol Neurosci 45(3):637–647

    Article  CAS  PubMed  Google Scholar 

  95. Wilson SM et al (2009) The neural basis of surface dyslexia in semantic dementia. Brain 132(Pt 1):71–86

    PubMed  Google Scholar 

  96. Goll JC et al (2012) Nonverbal sound processing in semantic dementia: a functional MRI study. Neuroimage 61(1):170–180

    Article  PubMed  PubMed Central  Google Scholar 

  97. Goll JC et al (2010) Non-verbal sound processing in the primary progressive aphasias. Brain 133(Pt 1):272–285

    Article  PubMed  Google Scholar 

  98. Elsinger CL et al (2003) Neural basis for impaired time reproduction in Parkinson’s disease: an fMRI study. J Int Neuropsychol Soc 9(7):1088–1098

    Article  PubMed  Google Scholar 

  99. Rowe JB, Siebner HR (2012) The motor system and its disorders. Neuroimage 61(2):464–477

    Article  PubMed  Google Scholar 

  100. Sabatini U et al (2000) Cortical motor reorganization in akinetic patients with Parkinson’s disease: a functional MRI study. Brain 123(Pt 2):394–403

    Article  PubMed  Google Scholar 

  101. Wu T, Hallett M (2005) A functional MRI study of automatic movements in patients with Parkinson’s disease. Brain 128(Pt 10):2250–2259

    Article  PubMed  Google Scholar 

  102. Wu T et al (2010) Neural correlates of bimanual anti-phase and in-phase movements in Parkinson’s disease. Brain 133(Pt 8):2394–2409

    Article  PubMed  PubMed Central  Google Scholar 

  103. Rowe JB et al (2010) Dynamic causal modelling of effective connectivity from fMRI: are results reproducible and sensitive to Parkinson’s disease and its treatment? Neuroimage 52(3):1015–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ceballos-Baumann AO (2003) Functional imaging in Parkinson’s disease: activation studies with PET, fMRI and SPECT. J Neurol 250(Suppl 1):I15–I23

    Article  PubMed  Google Scholar 

  105. Grafton ST (2004) Contributions of functional imaging to understanding parkinsonian symptoms. Curr Opin Neurobiol 14(6):715–719

    Article  CAS  PubMed  Google Scholar 

  106. Lewis SJ et al (2003) Cognitive impairments in early Parkinson’s disease are accompanied by reductions in activity in frontostriatal neural circuitry. J Neurosci 23(15):6351–6356

    CAS  PubMed  Google Scholar 

  107. Ekman U et al (2012) Functional brain activity and presynaptic dopamine uptake in patients with Parkinson’s disease and mild cognitive impairment: a cross-sectional study. Lancet Neurol 11(8):679–687

    Article  CAS  PubMed  Google Scholar 

  108. Nagano-Saito A et al (2014) Effect of mild cognitive impairment on the patterns of neural activity in early Parkinson’s disease. Neurobiol Aging 35(1):223–231

    Article  PubMed  Google Scholar 

  109. Voon V et al (2011) Dopamine agonists and risk: impulse control disorders in Parkinson’s disease. Brain 134(Pt 5):1438–1446

    Article  PubMed  PubMed Central  Google Scholar 

  110. Voon V et al (2011) Impulse control disorders in Parkinson disease: a multicenter case–control study. Ann Neurol 69(6):986–996

    Article  PubMed  Google Scholar 

  111. Sauer J et al (2006) Differences between Alzheimer’s disease and dementia with Lewy bodies: an fMRI study of task-related brain activity. Brain 129(Pt 7):1780–1788

    Article  PubMed  Google Scholar 

  112. Kim JS et al (2004) Functional MRI study of a serial reaction time task in Huntington’s disease. Psychiatry Res 131(1):23–30

    Article  PubMed  Google Scholar 

  113. Wolf RC et al (2009) Cortical dysfunction in patients with Huntington’s disease during working memory performance. Hum Brain Mapp 30(1):327–339

    Article  PubMed  Google Scholar 

  114. Georgiou-Karistianis N et al (2014) Functional magnetic resonance imaging of working memory in Huntington’s disease: cross-sectional data from the IMAGE-HD study. Hum Brain Mapp 35(5):1847–1864

    Article  PubMed  Google Scholar 

  115. Thiruvady DR et al (2007) Functional connectivity of the prefrontal cortex in Huntington’s disease. J Neurol Neurosurg Psychiatry 78(2):127–133

    Article  CAS  PubMed  Google Scholar 

  116. Gray MA et al (2013) Prefrontal activity in Huntington’s disease reflects cognitive and neuropsychiatric disturbances: the IMAGE-HD study. Exp Neurol 239:218–228

    Article  CAS  PubMed  Google Scholar 

  117. Rupp J et al (2011) Abnormal error-related antisaccade activation in premanifest and early manifest Huntington disease. Neuropsychology 25(3):306–318

    Article  PubMed  PubMed Central  Google Scholar 

  118. Tessitore A et al (2006) Subcortical motor plasticity in patients with sporadic ALS: an fMRI study. Brain Res Bull 69(5):489–494

    Article  CAS  PubMed  Google Scholar 

  119. Abrahams S et al (2004) Word retrieval in amyotrophic lateral sclerosis: a functional magnetic resonance imaging study. Brain 127(Pt 7):1507–1517

    Article  CAS  PubMed  Google Scholar 

  120. Witiuk K et al (2014) Cognitive deterioration and functional compensation in ALS measured with fMRI using an inhibitory task. J Neurosci 34(43):14260–14271

    Article  CAS  PubMed  Google Scholar 

  121. Palmieri A et al (2010) Right hemisphere dysfunction and emotional processing in ALS: an fMRI study. J Neurol 257(12):1970–1978

    Article  CAS  PubMed  Google Scholar 

  122. Raichle ME et al (2001) A default mode of brain function. Proc Natl Acad Sci U S A 98(2):676–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 1124:1–38

    Article  PubMed  Google Scholar 

  124. Lustig C et al (2003) Functional deactivations: change with age and dementia of the Alzheimer type. Proc Natl Acad Sci U S A 100(24):14504–14509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Greicius MD et al (2004) Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci U S A 101(13):4637–4642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Rombouts SARB et al (2005) Altered resting state networks in mild cognitive impairment and mild Alzheimer’s disease: an fMRI study. Hum Brain Mapp 26(4):231–239

    Article  PubMed  Google Scholar 

  127. Celone KA et al (2006) Alterations in memory networks in mild cognitive impairment and Alzheimer’s disease: an independent component analysis. J Neurosci 26(40):10222–10231

    Article  CAS  PubMed  Google Scholar 

  128. Buckner RL et al (2005) Molecular, structural, and functional characterization of Alzheimer’s disease: evidence for a relationship between default activity, amyloid, and memory. J Neurosci 25(34):7709–7717

    Article  CAS  PubMed  Google Scholar 

  129. Biswal B et al (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34(4):537–541

    Article  CAS  PubMed  Google Scholar 

  130. Vincent JL et al (2007) Intrinsic functional architecture in the anaesthetized monkey brain. Nature 447(7140):83–86

    Article  CAS  PubMed  Google Scholar 

  131. Smith SM et al (2009) Correspondence of the brain’s functional architecture during activation and rest. Proc Natl Acad Sci U S A 106(31):13040–13045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Yeo BT et al (2011) The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol 106(3):1125–1165

    Article  PubMed  Google Scholar 

  133. Zhou J et al (2010) Divergent network connectivity changes in behavioural variant frontotemporal dementia and Alzheimer’s disease. Brain 133(Pt 5):1352–1367

    Article  PubMed  PubMed Central  Google Scholar 

  134. Thomas JB et al (2014) Functional connectivity in autosomal dominant and late-onset Alzheimer disease. JAMA Neurol 71(9):1111–1122

    Article  PubMed  PubMed Central  Google Scholar 

  135. Binnewijzend MA et al (2012) Resting-state fMRI changes in Alzheimer’s disease and mild cognitive impairment. Neurobiol Aging 33(9):2018–2028

    Article  PubMed  Google Scholar 

  136. Brier MR et al (2012) Loss of intranetwork and internetwork resting state functional connections with Alzheimer’s disease progression. J Neurosci 32(26):8890–8899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Zhang HY et al (2010) Resting brain connectivity: changes during the progress of Alzheimer disease. Radiology 256(2):598–606

    Article  PubMed  Google Scholar 

  138. Sheline YI et al (2009) The default mode network and self-referential processes in depression. Proc Natl Acad Sci U S A 106(6):1942–1947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Petrella JR et al (2011) Default mode network connectivity in stable vs progressive mild cognitive impairment. Neurology 76(6):511–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Li SJ et al (2002) Alzheimer disease: evaluation of a functional MR imaging index as a marker. Radiology 225(1):253–259

    Article  PubMed  Google Scholar 

  141. Supekar K et al (2010) Development of functional and structural connectivity within the default mode network in young children. Neuroimage 52(1):290–301

    Article  PubMed  PubMed Central  Google Scholar 

  142. Damoiseaux JS et al (2012) Functional connectivity tracks clinical deterioration in Alzheimer’s disease. Neurobiol Aging 33(4):828.e19–30

    Article  Google Scholar 

  143. Schwindt GC et al (2013) Modulation of the default-mode network between rest and task in Alzheimer’s Disease. Cereb Cortex 23(7):1685–1694

    Article  PubMed  Google Scholar 

  144. Zamboni G et al (2013) Resting functional connectivity reveals residual functional activity in Alzheimer’s disease. Biol Psychiatry 74(5):375–383

    Article  PubMed  Google Scholar 

  145. Filippi M et al (2013) Functional network connectivity in the behavioral variant of frontotemporal dementia. Cortex 49(9):2389–2401

    Article  PubMed  Google Scholar 

  146. Agosta F et al (2012) Resting state fMRI in Alzheimer’s disease: beyond the default mode network. Neurobiol Aging 33(8):1564–1578

    Article  PubMed  Google Scholar 

  147. Lehmann M et al (2013) Intrinsic connectivity networks in healthy subjects explain clinical variability in Alzheimer’s disease. Proc Natl Acad Sci U S A 110(28):11606–11611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Gour N et al (2014) Functional connectivity changes differ in early and late-onset Alzheimer’s disease. Hum Brain Mapp 35(7):2978–2994

    Article  PubMed  Google Scholar 

  149. Lehmann M et al (2015) Loss of functional connectivity is greater outside the default mode network in nonfamilial early-onset Alzheimer’s disease variants. Neurobiol Aging 36(10):2678–2686

    Article  PubMed  PubMed Central  Google Scholar 

  150. Barnes J et al (2015) Alzheimer’s disease first symptoms are age dependent: evidence from the NACC dataset. Alzheimers Dement 11(11):1349–1357

    Article  PubMed  Google Scholar 

  151. Petrella JR et al (2007) Prognostic value of posteromedial cortex deactivation in mild cognitive impairment. PLoS One 2(10):e1104

    Article  PubMed  PubMed Central  Google Scholar 

  152. Hedden T et al (2009) Disruption of functional connectivity in clinically normal older adults harboring amyloid burden. J Neurosci 29(40):12686–12694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Drzezga A et al (2011) Neuronal dysfunction and disconnection of cortical hubs in non-demented subjects with elevated amyloid burden. Brain 134(Pt 6):1635–1646

    Article  PubMed  PubMed Central  Google Scholar 

  154. Brier MR et al (2014) Functional connectivity and graph theory in preclinical Alzheimer’s disease. Neurobiol Aging 35(4):757–768

    Article  PubMed  Google Scholar 

  155. Wang L et al (2013) Cerebrospinal fluid Abeta42, phosphorylated Tau181, and resting-state functional connectivity. JAMA Neurol 70(10):1242–1248

    PubMed  PubMed Central  Google Scholar 

  156. Sheline YI et al (2010) Amyloid plaques disrupt resting state default mode network connectivity in cognitively normal elderly. Biol Psychiatry 67(6):584–587

    Article  CAS  PubMed  Google Scholar 

  157. Farb NA et al (2013) Abnormal network connectivity in frontotemporal dementia: evidence for prefrontal isolation. Cortex 49(7):1856–1873

    Article  PubMed  Google Scholar 

  158. Whitwell JL et al (2011) Altered functional connectivity in asymptomatic MAPT subjects: a comparison to bvFTD. Neurology 77(9):866–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Agosta F et al (2014) Disrupted brain connectome in semantic variant of primary progressive aphasia. Neurobiol Aging 35(11):2646–2655

    Article  PubMed  Google Scholar 

  160. Gardner RC et al (2013) Intrinsic connectivity network disruption in progressive supranuclear palsy. Ann Neurol 73(5):603–616

    Article  PubMed  PubMed Central  Google Scholar 

  161. Williams DR et al (2007) Pathological tau burden and distribution distinguishes progressive supranuclear palsy-parkinsonism from Richardson’s syndrome. Brain 130(Pt 6):1566–1576

    Article  PubMed  Google Scholar 

  162. Whitwell JL et al (2011) Disrupted thalamocortical connectivity in PSP: a resting-state fMRI, DTI, and VBM study. Parkinsonism Relat Disord 17(8):599–605

    Article  PubMed  PubMed Central  Google Scholar 

  163. Filippi M et al (2015) Progress towards a neuroimaging biomarker for amyotrophic lateral sclerosis. Lancet Neurol 14(8):786–788

    Article  PubMed  Google Scholar 

  164. Agosta F et al (2013) Divergent brain network connectivity in amyotrophic lateral sclerosis. Neurobiol Aging 34(2):419–427

    Article  PubMed  Google Scholar 

  165. Galvin JE et al (2011) Resting bold fMRI differentiates dementia with Lewy bodies vs Alzheimer disease. Neurology 76(21):1797–1803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Kenny ER et al (2012) Functional connectivity in cortical regions in dementia with Lewy bodies and Alzheimer’s disease. Brain 135(Pt 2):569–581

    Article  PubMed  Google Scholar 

  167. Kenny ER et al (2013) Subcortical connectivity in dementia with Lewy bodies and Alzheimer’s disease. Br J Psychiatry 203(3):209–214

    Article  PubMed  Google Scholar 

  168. Lowther ER et al (2014) Lewy body compared with Alzheimer dementia is associated with decreased functional connectivity in resting state networks. Psychiatry Res 223(3):192–201

    Article  PubMed  Google Scholar 

  169. Seibert TM et al (2012) Interregional correlations in Parkinson disease and Parkinson-related dementia with resting functional MR imaging. Radiology 263(1):226–234

    Article  PubMed  PubMed Central  Google Scholar 

  170. Rektorova I et al (2012) Default mode network and extrastriate visual resting state network in patients with Parkinson’s disease dementia. Neurodegener Dis 10(1–4):232–237

    Article  CAS  PubMed  Google Scholar 

  171. Chen B et al (2015) Changes in anatomical and functional connectivity of Parkinson’s disease patients according to cognitive status. Eur J Radiol 84(7):1318–1324

    Article  PubMed  Google Scholar 

  172. Amboni M et al (2015) Resting-state functional connectivity associated with mild cognitive impairment in Parkinson’s disease. J Neurol 262(2):425–434

    Article  PubMed  Google Scholar 

  173. Possin KL et al (2013) Rivastigmine is associated with restoration of left frontal brain activity in Parkinson’s disease. Mov Disord 28(10):1384–1390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Baggio HC et al (2015) Cognitive impairment and resting-state network connectivity in Parkinson’s disease. Hum Brain Mapp 36(1):199–212

    Article  PubMed  Google Scholar 

  175. Borroni B et al (2015) Structural and functional imaging study in dementia with Lewy bodies and Parkinson’s disease dementia. Parkinsonism Relat Disord 21(9):1049–1055

    Article  PubMed  Google Scholar 

  176. Peraza LR et al (2015) Resting state in Parkinson’s disease dementia and dementia with Lewy bodies: commonalities and differences. Int J Geriatr Psychiatry 30(11):1135–1146

    Article  PubMed  PubMed Central  Google Scholar 

  177. Peraza LR et al (2014) fMRI resting state networks and their association with cognitive fluctuations in dementia with Lewy bodies. Neuroimage Clin 4:558–565

    Article  PubMed  PubMed Central  Google Scholar 

  178. Baggio HC et al (2015) Resting-state frontostriatal functional connectivity in Parkinson’s disease-related apathy. Mov Disord 30(5):671–679

    Article  PubMed  Google Scholar 

  179. Yao N et al (2015) Resting activity in visual and corticostriatal pathways in Parkinson’s disease with hallucinations. Parkinsonism Relat Disord 21(2):131–137

    Article  PubMed  Google Scholar 

  180. Yao N et al (2014) The default mode network is disrupted in Parkinson’s disease with visual hallucinations. Hum Brain Mapp 35(11):5658–5666

    Article  PubMed  PubMed Central  Google Scholar 

  181. Dumas EM et al (2013) Reduced functional brain connectivity prior to and after disease onset in Huntington’s disease. Neuroimage Clin 2:377–384

    Article  PubMed  PubMed Central  Google Scholar 

  182. Poudel GR et al (2014) Abnormal synchrony of resting state networks in premanifest and symptomatic Huntington disease: the IMAGE-HD study. J Psychiatry Neurosci 39(2):87–96

    PubMed  PubMed Central  Google Scholar 

  183. Werner CJ et al (2014) Altered resting-state connectivity in Huntington’s disease. Hum Brain Mapp 35(6):2582–2593

    Article  PubMed  Google Scholar 

  184. Quarantelli M et al (2013) Default-mode network changes in Huntington’s disease: an integrated MRI study of functional connectivity and morphometry. PLoS One 8(8):e72159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Seeley WW et al (2009) Neurodegenerative diseases target large-scale human brain networks. Neuron 62(1):42–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Sanders DW et al (2014) Distinct tau prion strains propagate in cells and mice and define different tauopathies. Neuron 82(6):1271–1288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Filippi M et al (2013) Assessment of system dysfunction in the brain through MRI-based connectomics. Lancet Neurol 12(12):1189–1199

    Article  PubMed  Google Scholar 

  188. Sperling R (2011) Potential of functional MRI as a biomarker in early Alzheimer’s disease. Neurobiol Aging 32(Suppl 1):S37–S43

    Article  PubMed  PubMed Central  Google Scholar 

  189. Wierenga CE, Bondi MW (2007) Use of functional magnetic resonance imaging in the early identification of Alzheimer’s disease. Neuropsychol Rev 17(2):127–143

    Article  PubMed  PubMed Central  Google Scholar 

  190. Backman L et al (1999) Brain regions associated with episodic retrieval in normal aging and Alzheimer’s disease. Neurology 52(9):1861–1870

    Article  CAS  PubMed  Google Scholar 

  191. Becker JT et al (1996) Compensatory reallocation of brain resources supporting verbal episodic memory in Alzheimer’s disease. Neurology 46(3):692–700

    Article  CAS  PubMed  Google Scholar 

  192. Stern Y et al (2000) Different brain networks mediate task performance in normal aging and AD: defining compensation. Neurology 55(9):1291–1297

    Article  CAS  PubMed  Google Scholar 

  193. Putcha D et al (2011) Hippocampal hyperactivation associated with cortical thinning in Alzheimer’s disease signature regions in non-demented elderly adults. J Neurosci 31(48):17680–17688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Miller SL et al (2008) Hippocampal activation in adults with mild cognitive impairment predicts subsequent cognitive decline. J Neurol Neurosurg Psychiatry 79(6):630–635

    Article  CAS  PubMed  Google Scholar 

  195. DeKosky ST et al (2002) Upregulation of choline acetyltransferase activity in hippocampus and frontal cortex of elderly subjects with mild cognitive impairment. Ann Neurol 51(2):145–155

    Article  CAS  PubMed  Google Scholar 

  196. Hashimoto M, Masliah E (2003) Cycles of aberrant synaptic sprouting and neurodegeneration in Alzheimer’s and dementia with Lewy bodies. Neurochem Res 28(11):1743–1756

    Article  CAS  PubMed  Google Scholar 

  197. Stern EA et al (2004) Cortical synaptic integration in vivo is disrupted by amyloid-beta plaques. J Neurosci 24(19):4535–4540

    Article  CAS  PubMed  Google Scholar 

  198. Palop JJ, Chin J, Mucke L (2006) A network dysfunction perspective on neurodegenerative diseases. Nature 443(7113):768–773

    Article  CAS  PubMed  Google Scholar 

  199. Bakker A et al (2012) Reduction of hippocampal hyperactivity improves cognition in amnestic mild cognitive impairment. Neuron 74(3):467–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Mueggler T et al (2002) Compromised hemodynamic response in amyloid precursor protein transgenic mice. J Neurosci 22(16):7218–7224

    CAS  PubMed  Google Scholar 

  201. El Fakhri G et al (2003) MRI-guided SPECT perfusion measures and volumetric MRI in prodromal Alzheimer disease. Arch Neurol 60(8):1066–1072

    Article  PubMed  Google Scholar 

  202. Cohen ER, Ugurbil K, Kim SG (2002) Effect of basal conditions on the magnitude and dynamics of the blood oxygenation level-dependent fMRI response. J Cereb Blood Flow Metab 22(9):1042–1053

    Article  CAS  PubMed  Google Scholar 

  203. Davis TL et al (1998) Calibrated functional MRI: mapping the dynamics of oxidative metabolism. Proc Natl Acad Sci U S A 95(4):1834–1839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Gur RC et al (1988) Effects of task difficulty on regional cerebral blood flow: relationships with anxiety and performance. Psychophysiology 25(4):392–399

    Article  CAS  PubMed  Google Scholar 

  205. Grasby PM et al (1994) A graded task approach to the functional mapping of brain areas implicated in auditory-verbal memory. Brain 117(Pt 6):1271–1282

    Article  PubMed  Google Scholar 

  206. Grady CL (1996) Age-related changes in cortical blood flow activation during perception and memory. Ann N Y Acad Sci 777:14–21

    Article  CAS  PubMed  Google Scholar 

  207. Rypma B, D’Esposito M (1999) The roles of prefrontal brain regions in components of working memory: effects of memory load and individual differences. Proc Natl Acad Sci U S A 96(11):6558–6563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Kirchhoff BA, Buckner RL (2006) Functional-anatomic correlates of individual differences in memory. Neuron 51(2):263–274

    Article  CAS  PubMed  Google Scholar 

  209. Haslinger B et al (2001) Event-related functional magnetic resonance imaging in Parkinson’s disease before and after levodopa. Brain 124(Pt 3):558–570

    Article  CAS  PubMed  Google Scholar 

  210. Monchi O et al (2004) Neural bases of set-shifting deficits in Parkinson’s disease. J Neurosci 24(3):702–710

    Article  CAS  PubMed  Google Scholar 

  211. Helmich RC et al (2007) Cerebral compensation during motor imagery in Parkinson’s disease. Neuropsychologia 45(10):2201–2215

    Article  PubMed  Google Scholar 

  212. Georgiou-Karistianis N et al (2007) Increased cortical recruitment in Huntington’s disease using a Simon task. Neuropsychologia 45(8):1791–1800

    Article  PubMed  Google Scholar 

  213. Stanton BR et al (2007) Altered cortical activation during a motor task in ALS: evidence for involvement of central pathways. J Neurol 254(9):1260–1267

    Article  PubMed  Google Scholar 

  214. Schoenfeld MA et al (2005) Functional motor compensation in amyotrophic lateral sclerosis. J Neurol 252(8):944–952

    Article  PubMed  Google Scholar 

  215. Konrad C et al (2006) Subcortical reorganization in amyotrophic lateral sclerosis. Exp Brain Res 172(3):361–369

    Article  CAS  PubMed  Google Scholar 

  216. Drummond SP et al (2000) Altered brain response to verbal learning following sleep deprivation. Nature 403(6770):655–657

    Article  CAS  PubMed  Google Scholar 

  217. Cabeza R et al (2002) Aging gracefully: compensatory brain activity in high-performing older adults. Neuroimage 17(3):1394–1402

    Article  PubMed  Google Scholar 

  218. Carey JR et al (2002) Analysis of fMRI and finger tracking training in subjects with chronic stroke. Brain 125(Pt 4):773–788

    Article  PubMed  Google Scholar 

  219. Johansen-Berg H et al (2002) Correlation between motor improvements and altered fMRI activity after rehabilitative therapy. Brain 125(Pt 12):2731–2742

    Article  PubMed  Google Scholar 

  220. Morgen K et al (2004) Training-dependent plasticity in patients with multiple sclerosis. Brain 127(Pt 11):2506–2517

    Article  PubMed  Google Scholar 

  221. Reddy H et al (2000) Evidence for adaptive functional changes in the cerebral cortex with axonal injury from multiple sclerosis. Brain 123(Pt 11):2314–2320

    Article  PubMed  Google Scholar 

  222. McAllister TW et al (1999) Brain activation during working memory 1 month after mild traumatic brain injury: a functional MRI study. Neurology 53(6):1300–1308

    Article  CAS  PubMed  Google Scholar 

  223. Ernst T et al (2002) Abnormal brain activation on functional MRI in cognitively asymptomatic HIV patients. Neurology 59(9):1343–1349

    Article  CAS  PubMed  Google Scholar 

  224. Desmond JE et al (2003) Increased frontocerebellar activation in alcoholics during verbal working memory: an fMRI study. Neuroimage 19(4):1510–1520

    Article  PubMed  Google Scholar 

  225. Callicott JH et al (2003) Complexity of prefrontal cortical dysfunction in schizophrenia: more than up or down. Am J Psychiatry 160(12):2209–2215

    Article  PubMed  Google Scholar 

  226. Walsh DM, Selkoe DJ (2004) Deciphering the molecular basis of memory failure in Alzheimer’s disease. Neuron 44(1):181–193

    Article  CAS  PubMed  Google Scholar 

  227. Pievani M et al (2014) Brain connectivity in neurodegenerative diseases—from phenotype to proteinopathy. Nat Rev Neurol 10(11):620–633

    Article  PubMed  Google Scholar 

  228. Winterer G et al (2005) Neuroimaging and human genetics. Int Rev Neurobiol 67:325–383

    Article  PubMed  Google Scholar 

  229. Hariri AR, Weinberger DR (2003) Functional neuroimaging of genetic variation in serotonergic neurotransmission. Genes Brain Behav 2(6):341–349

    Article  CAS  PubMed  Google Scholar 

  230. Nikolova YS, Hariri AR (2015) Can we observe epigenetic effects on human brain function? Trends Cogn Sci 19(7):366–373

    Article  PubMed  PubMed Central  Google Scholar 

  231. Smith CD et al (1999) Altered brain activation in cognitively intact individuals at high risk for Alzheimer’s disease. Neurology 53(7):1391–1396

    Article  CAS  PubMed  Google Scholar 

  232. Smith CD et al (2002) Women at risk for AD show increased parietal activation during a fluency task. Neurology 58(8):1197–1202

    Article  CAS  PubMed  Google Scholar 

  233. Bookheimer SY et al (2000) Patterns of brain activation in people at risk for Alzheimer’s disease. N Engl J Med 343(7):450–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Bondi MW et al (2005) fMRI evidence of compensatory mechanisms in older adults at genetic risk for Alzheimer disease. Neurology 64(3):501–508

    Article  PubMed  PubMed Central  Google Scholar 

  235. Johnson SC et al (2006) The influence of Alzheimer disease family history and apolipoprotein E epsilon4 on mesial temporal lobe activation. J Neurosci 26(22):6069–6076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Patel KT et al (2013) Default mode network activity and white matter integrity in healthy middle-aged ApoE4 carriers. Brain Imaging Behav 7(1):60–67

    Article  PubMed  Google Scholar 

  237. Machulda MM et al (2011) Effect of APOE epsilon4 status on intrinsic network connectivity in cognitively normal elderly subjects. Arch Neurol 68(9):1131–1136

    Article  PubMed  PubMed Central  Google Scholar 

  238. Heise V et al (2014) Apolipoprotein E genotype, gender and age modulate connectivity of the hippocampus in healthy adults. Neuroimage 98:23–30

    Article  CAS  PubMed  Google Scholar 

  239. Damoiseaux JS et al (2012) Gender modulates the APOE epsilon4 effect in healthy older adults: convergent evidence from functional brain connectivity and spinal fluid tau levels. J Neurosci 32(24):8254–8262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Sheline YI et al (2010) APOE4 allele disrupts resting state fMRI connectivity in the absence of amyloid plaques or decreased CSF Abeta42. J Neurosci 30(50):17035–17040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Filippini N et al (2009) Distinct patterns of brain activity in young carriers of the APOE-{varepsilon}4 allele. Proc Natl Acad Sci U S A 106(17):7209–7214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Dennis NA et al (2010) Temporal lobe functional activity and connectivity in young adult APOE varepsilon4 carriers. Alzheimers Dement 6(4):303–311

    Article  PubMed  Google Scholar 

  243. Quiroz YT et al (2010) Hippocampal hyperactivation in presymptomatic familial Alzheimer’s disease. Ann Neurol 68(6):865–875

    Article  PubMed  PubMed Central  Google Scholar 

  244. Reiman EM et al (2012) Brain imaging and fluid biomarker analysis in young adults at genetic risk for autosomal dominant Alzheimer’s disease in the presenilin 1 E280A kindred: a case-control study. Lancet Neurol 11(12):1048–1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Quiroz YT et al (2015) Brain imaging and blood biomarker abnormalities in children with autosomal dominant Alzheimer disease: a cross-sectional study. JAMA Neurol 72(8):912–919

    Article  PubMed  PubMed Central  Google Scholar 

  246. Chhatwal JP et al (2013) Impaired default network functional connectivity in autosomal dominant Alzheimer disease. Neurology 81(8):736–744

    Article  PubMed  PubMed Central  Google Scholar 

  247. Mondadori CR et al (2006) Enhanced brain activity may precede the diagnosis of Alzheimer’s disease by 30 years. Brain 129(Pt 11):2908–2922

    Article  PubMed  Google Scholar 

  248. Dopper EG et al (2013) Structural and functional brain connectivity in presymptomatic familial frontotemporal dementia. Neurology 80(9):814–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Borroni B et al (2012) Granulin mutation drives brain damage and reorganization from preclinical to symptomatic FTLD. Neurobiol Aging 33(10):2506–2520

    Article  CAS  PubMed  Google Scholar 

  250. Premi E et al (2014) Effect of TMEM106B polymorphism on functional network connectivity in asymptomatic GRN mutation carriers. JAMA Neurol 71(2):216–221

    Article  PubMed  Google Scholar 

  251. Lee SE et al (2014) Altered network connectivity in frontotemporal dementia with C9orf72 hexanucleotide repeat expansion. Brain 137(Pt 11):3047–3060

    Article  PubMed  PubMed Central  Google Scholar 

  252. Reading SA et al (2004) Functional brain changes in presymptomatic Huntington’s disease. Ann Neurol 55(6):879–883

    Article  PubMed  Google Scholar 

  253. Kloppel S et al (2010) Irritability in pre-clinical Huntington’s disease. Neuropsychologia 48(2):549–557

    Article  PubMed  PubMed Central  Google Scholar 

  254. Van den Stock J et al (2015) Functional brain changes underlying irritability in premanifest Huntington’s disease. Hum Brain Mapp 36(7):2681–2690

    Article  PubMed  Google Scholar 

  255. Wolf RC et al (2007) Dorsolateral prefrontal cortex dysfunction in presymptomatic Huntington’s disease: evidence from event-related fMRI. Brain 130(Pt 11):2845–2857

    Article  PubMed  Google Scholar 

  256. Wolf RC et al (2011) Longitudinal functional magnetic resonance imaging of cognition in preclinical Huntington’s disease. Exp Neurol 231(2):214–222

    Article  PubMed  Google Scholar 

  257. Wolf RC et al (2008) Altered frontostriatal coupling in pre-manifest Huntington’s disease: effects of increasing cognitive load. Eur J Neurol 15(11):1180–1190

    Article  CAS  PubMed  Google Scholar 

  258. Georgiou-Karistianis N et al (2013) Functional and connectivity changes during working memory in Huntington’s disease: 18 month longitudinal data from the IMAGE-HD study. Brain Cogn 83(1):80–91

    Article  PubMed  Google Scholar 

  259. Wolf RC et al (2012) Default-mode network changes in preclinical Huntington’s disease. Exp Neurol 237(1):191–198

    Article  PubMed  Google Scholar 

  260. Odish OF et al (2015) Longitudinal resting state fMRI analysis in healthy controls and premanifest Huntington’s disease gene carriers: a three-year follow-up study. Hum Brain Mapp 36(1):110–119

    Article  PubMed  Google Scholar 

  261. Hampel H et al (2014) Perspective on future role of biological markers in clinical therapy trials of Alzheimer’s disease: a long-range point of view beyond 2020. Biochem Pharmacol 88(4):426–449

    Article  CAS  PubMed  Google Scholar 

  262. Sperling R et al (2002) Functional MRI detection of pharmacologically induced memory impairment. Proc Natl Acad Sci U S A 99(1):455–460

    Article  CAS  PubMed  Google Scholar 

  263. Thiel CM, Henson RN, Dolan RJ (2002) Scopolamine but not lorazepam modulates face repetition priming: a psychopharmacological fMRI study. Neuropsychopharmacology 27(2):282–292

    Article  CAS  PubMed  Google Scholar 

  264. Leslie RA, James MF (2000) Pharmacological magnetic resonance imaging: a new application for functional MRI. Trends Pharmacol Sci 21(8):314–318

    Article  CAS  PubMed  Google Scholar 

  265. Rombouts SA et al (2002) Alterations in brain activation during cholinergic enhancement with rivastigmine in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 73(6):665–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Saykin AJ et al (2004) Cholinergic enhancement of frontal lobe activity in mild cognitive impairment. Brain 127(Pt 7):1574–1583

    Article  PubMed  Google Scholar 

  267. Goekoop R et al (2006) Cholinergic challenge in Alzheimer patients and mild cognitive impairment differentially affects hippocampal activation—a pharmacological fMRI study. Brain 129(Pt 1):141–157

    PubMed  Google Scholar 

  268. Miettinen PS et al (2011) Effect of cholinergic stimulation in early Alzheimer’s disease—functional imaging during a recognition memory task. Curr Alzheimer Res 8(7):753–764

    Article  CAS  PubMed  Google Scholar 

  269. Bentley P, Driver J, Dolan RJ (2008) Cholinesterase inhibition modulates visual and attentional brain responses in Alzheimer’s disease and health. Brain 131(Pt 2):409–424

    Article  PubMed  Google Scholar 

  270. Shanks MF et al (2007) Regional brain activity after prolonged cholinergic enhancement in early Alzheimer’s disease. Magn Reson Imaging 25(6):848–859

    Article  CAS  PubMed  Google Scholar 

  271. Kircher TT et al (2005) Cortical activation during cholinesterase-inhibitor treatment in Alzheimer disease: preliminary findings from a pharmaco-fMRI study. Am J Geriatr Psychiatry 13(11):1006–1013

    PubMed  Google Scholar 

  272. Thiyagesh SN et al (2010) Treatment effects of therapeutic cholinesterase inhibitors on visuospatial processing in Alzheimer’s disease: a longitudinal functional MRI study. Dement Geriatr Cogn Disord 29(2):176–188

    Article  PubMed  Google Scholar 

  273. McGeown WJ, Shanks MF, Venneri A (2008) Prolonged cholinergic enrichment influences regional cortical activation in early Alzheimer’s disease. Neuropsychiatr Dis Treat 4(2):465–476

    PubMed  PubMed Central  Google Scholar 

  274. Bokde AL et al (2009) Decreased activation along the dorsal visual pathway after a 3-month treatment with galantamine in mild Alzheimer disease: a functional magnetic resonance imaging study. J Clin Psychopharmacol 29(2):147–156

    Article  CAS  PubMed  Google Scholar 

  275. McLaren DG et al (2012) Tracking cognitive change over 24 weeks with longitudinal functional magnetic resonance imaging in Alzheimer’s disease. Neurodegener Dis 9(4):176–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Venneri A, McGeown WJ, Shanks MF (2009) Responders to ChEI treatment of Alzheimer’s disease show restitution of normal regional cortical activation. Curr Alzheimer Res 6(2):97–111

    Article  CAS  PubMed  Google Scholar 

  277. Dhanjal NS et al (2013) Auditory cortical function during verbal episodic memory encoding in Alzheimer’s disease. Ann Neurol 73(2):294–302

    Article  PubMed  Google Scholar 

  278. Dhanjal NS, Wise RJ (2014) Frontoparietal cognitive control of verbal memory recall in Alzheimer’s disease. Ann Neurol 76(2):241–251

    Article  PubMed  Google Scholar 

  279. Goekoop R et al (2004) Challenging the cholinergic system in mild cognitive impairment: a pharmacological fMRI study. Neuroimage 23(4):1450–1459

    Article  PubMed  Google Scholar 

  280. Gron G et al (2006) Inhibition of hippocampal function in mild cognitive impairment: targeting the cholinergic hypothesis. Neurobiol Aging 27(1):78–87

    Article  CAS  PubMed  Google Scholar 

  281. Risacher SL et al (2013) Cholinergic enhancement of brain activation in mild cognitive impairment during episodic memory encoding. Front Psychiatry 4:105

    Article  PubMed  PubMed Central  Google Scholar 

  282. Petrella JR et al (2009) Effects of donepezil on cortical activation in mild cognitive impairment: a pilot double-blind placebo-controlled trial using functional MR imaging. AJNR Am J Neuroradiol 30(2):411–416

    Article  CAS  PubMed  Google Scholar 

  283. Pa J et al (2013) Cholinergic enhancement of functional networks in older adults with mild cognitive impairment. Ann Neurol 73(6):762–773

    Article  PubMed  Google Scholar 

  284. Goveas JS et al (2011) Recovery of hippocampal network connectivity correlates with cognitive improvement in mild Alzheimer’s disease patients treated with donepezil assessed by resting-state fMRI. J Magn Reson Imaging 34(4):764–773

    Article  PubMed  PubMed Central  Google Scholar 

  285. Li W et al (2012) Changes in regional cerebral blood flow and functional connectivity in the cholinergic pathway associated with cognitive performance in subjects with mild Alzheimer’s disease after 12-week donepezil treatment. Neuroimage 60(2):1083–1091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Zaidel L et al (2012) Donepezil effects on hippocampal and prefrontal functional connectivity in Alzheimer’s disease: preliminary report. J Alzheimers Dis 31(Suppl 3):S221–S226

    PubMed  PubMed Central  Google Scholar 

  287. Lorenzi M et al (2012) Effect of memantine on resting state default mode network activity in Alzheimer’s disease. Drugs Aging 28(3):205–217

    Article  Google Scholar 

  288. Sole-Padulles C et al (2013) Donepezil treatment stabilizes functional connectivity during resting state and brain activity during memory encoding in Alzheimer’s disease. J Clin Psychopharmacol 33(2):199–205

    Article  CAS  PubMed  Google Scholar 

  289. Wang L et al (2014) The effect of APOE epsilon4 allele on cholinesterase inhibitors in patients with Alzheimer disease: evaluation of the feasibility of resting state functional connectivity magnetic resonance imaging. Alzheimer Dis Assoc Disord 28(2):122–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Wang Z et al (2014) Acupuncture modulates resting state hippocampal functional connectivity in Alzheimer disease. PLoS One 9(3):e91160

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  291. Jia B et al (2015) The effects of acupuncture at real or sham acupoints on the intrinsic brain activity in mild cognitive impairment patients. Evid Based Complement Alternat Med 2015:529675

    PubMed  PubMed Central  Google Scholar 

  292. Wells RE et al (2013) Meditation’s impact on default mode network and hippocampus in mild cognitive impairment: a pilot study. Neurosci Lett 556:15–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. van Paasschen J et al (2013) Cognitive rehabilitation changes memory-related brain activity in people with Alzheimer disease. Neurorehabil Neural Repair 27(5):448–459

    Article  PubMed  Google Scholar 

  294. Hampstead BM et al (2012) Mnemonic strategy training partially restores hippocampal activity in patients with mild cognitive impairment. Hippocampus 22(8):1652–1658

    Article  PubMed  PubMed Central  Google Scholar 

  295. Buhmann C et al (2003) Pharmacologically modulated fMRI—cortical responsiveness to levodopa in drug-naive hemiparkinsonian patients. Brain 126(Pt 2):451–461

    Article  CAS  PubMed  Google Scholar 

  296. Kwak Y et al (2010) Altered resting state cortico-striatal connectivity in mild to moderate stage Parkinson’s disease. Front Syst Neurosci 4:143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Wu T et al (2009) Regional homogeneity changes in patients with Parkinson’s disease. Hum Brain Mapp 30(5):1502–1510

    Article  PubMed  Google Scholar 

  298. Agosta F et al (2014) Cortico-striatal-thalamic network functional connectivity in hemiparkinsonism. Neurobiol Aging 35(11):2592–2602

    Article  PubMed  Google Scholar 

  299. Choe IH et al (2013) Decreased and increased cerebral regional homogeneity in early Parkinson’s disease. Brain Res 1527:230–237

    Article  CAS  PubMed  Google Scholar 

  300. Esposito F et al (2013) Rhythm-specific modulation of the sensorimotor network in drug-naive patients with Parkinson’s disease by levodopa. Brain 136(Pt 3):710–725

    Article  PubMed  Google Scholar 

  301. Mattay VS et al (2002) Dopaminergic modulation of cortical function in patients with Parkinson’s disease. Ann Neurol 51(2):156–164

    Article  CAS  PubMed  Google Scholar 

  302. Tessitore A et al (2002) Dopamine modulates the response of the human amygdala: a study in Parkinson’s disease. J Neurosci 22(20):9099–9103

    CAS  PubMed  Google Scholar 

  303. Arantes PR et al (2006) Performing functional magnetic resonance imaging in patients with Parkinson’s disease treated with deep brain stimulation. Mov Disord 21(8):1154–1162

    Article  PubMed  Google Scholar 

  304. Phillips MD et al (2006) Parkinson disease: pattern of functional MR imaging activation during deep brain stimulation of subthalamic nucleus—initial experience. Radiology 239(1):209–216

    Article  PubMed  Google Scholar 

  305. Kahan J et al (2012) Therapeutic subthalamic nucleus deep brain stimulation reverses cortico-thalamic coupling during voluntary movements in Parkinson’s disease. PLoS One 7(12):e50270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Kahan J et al (2014) Resting state functional MRI in Parkinson’s disease: the impact of deep brain stimulation on ‘effective’ connectivity. Brain 137(Pt 4):1130–1144

    Article  PubMed  PubMed Central  Google Scholar 

  307. Scheff SW et al (2006) Hippocampal synaptic loss in early Alzheimer’s disease and mild cognitive impairment. Neurobiol Aging 27(10):1372–1384

    Article  CAS  PubMed  Google Scholar 

  308. Jack CR Jr et al (2013) Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol 12(2):207–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  309. Bobholz JA et al (2007) Clinical use of functional magnetic resonance imaging: reflections on the new CPT codes. Neuropsychol Rev 17(2):189–191

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bradford C. Dickerson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Dickerson, B.C., Agosta, F., Filippi, M. (2016). fMRI in Neurodegenerative Diseases: From Scientific Insights to Clinical Applications. In: Filippi, M. (eds) fMRI Techniques and Protocols. Neuromethods, vol 119. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-5611-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-5611-1_23

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-5609-8

  • Online ISBN: 978-1-4939-5611-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics