Skip to main content

Computational Fractal-Based Analysis of MR Susceptibility-Weighted Imaging (SWI) in Neuro-oncology and Neurotraumatology

  • Chapter
  • First Online:
The Fractal Geometry of the Brain

Part of the book series: Springer Series in Computational Neuroscience ((NEUROSCI))

  • 2745 Accesses

Abstract

Susceptibility-weighted imaging (SWI) is a magnetic resonance imaging (MRI) technique able to depict the magnetic susceptibility produced by different substances, such as deoxyhemoglobin, calcium, and iron. The main application of SWI in clinical neuroimaging is detecting microbleedings and venous vasculature. Quantitative analyses of SWI have been developed over the last few years, aimed to offer new parameters, which could be used as neuroimaging biomarkers. Each technique has shown pros and cons, but no gold standard exists yet. The fractal dimension (FD) has been investigated as a novel potential objective parameter for monitoring intratumoral space-filling properties of SWI patterns. We showed that SWI patterns found in different tumors or different glioma grades can be represented by a gradient in the fractal dimension, thereby enabling each tumor to be assigned a specific SWI fingerprint. Such results were especially relevant in the differentiation of low-grade versus high-grade gliomas, as well as from malignant gliomas versus lymphomas.

Therefore FD has been suggested as a potential image biomarker to analyze intrinsic neoplastic architecture in order to improve the differential diagnosis within clinical neuroimaging, determine appropriate therapy, and improve outcome in patients.

These promising preliminary findings could be extended into the field of neurotraumatology, by means of the application of computational fractal-based analyses for the qualitative and quantitative imaging of microbleedings in traumatic brain injury patients. In consideration of some evidences showing that SWI signals are correlated with trauma clinical severity, FD might offer some objective prognostic biomarkers.

In conclusion, fractal-based morphometrics of SWI could be further investigated to be used in a complementary way with other techniques, in order to form a holistic understanding of the temporal evolution of brain tumors and follow-up response to treatment, with several further applications in other fields, such as neurotraumatology and cerebrovascular neurosurgery as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    At the time of the chapter writing, the WHO classification system for brain tumors published in 2016 was not available yet.

References

  1. Akiyama Y, Miyata K, Harada K, Minamida Y, Nonaka T, Koyanagi I, et al. Susceptibility-weighted magnetic resonance imaging for the detection of cerebral microhemorrhage in patients with traumatic brain injury. Neurol Med Chir (Tokyo). 2009;49:97, 9; discussion 99.

    Article  Google Scholar 

  2. Arrillaga-Romany I, Norden AD. Antiangiogenic therapies for glioblastoma. CNS Oncol. 2014;3:349–58.

    Article  CAS  PubMed  Google Scholar 

  3. Ashwal S, Tong KA, Ghosh N, Bartnik-Olson B, Holshouser BA. Application of advanced neuroimaging modalities in pediatric traumatic brain injury. J Child Neurol. 2014;29:1704–17.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Babikian T, Freier MC, Tong KA, Nickerson JP, Wall CJ, Holshouser BA, et al. Susceptibility weighted imaging: neuropsychologic outcome and pediatric head injury. Pediatr Neurol. 2005;33:184–94.

    Article  PubMed  Google Scholar 

  5. Baldawa SS, Bele K, Menon G, George CV, Abraham M, Nair S. Susceptibility-weighted imaging: a new tool for detection of intratumoral bleeding and subarachnoid hemorrhage – report of two cases. Clin Neuroradiol. 2012;22:257–61.

    Article  CAS  PubMed  Google Scholar 

  6. Bay OF, Usakli AB. Survey of fuzzy logic applications in brain-related researches. J Med Syst. 2003;27:215–23.

    Article  PubMed  Google Scholar 

  7. Beauchamp MH, Beare R, Ditchfield M, Coleman L, Babl FE, Kean M, et al. Susceptibility weighted imaging and its relationship to outcome after pediatric traumatic brain injury. Cortex. 2013;49:591–8.

    Article  PubMed  Google Scholar 

  8. Beauchamp MH, Ditchfield M, Babl FE, Kean M, Catroppa C, Yeates KO, et al. Detecting traumatic brain lesions in children: CT versus MRI versus susceptibility weighted imaging (SWI). J Neurotrauma. 2011;28:915–27.

    Article  PubMed  Google Scholar 

  9. Benson RR, Gattu R, Sewick B, Kou Z, Zakariah N, Cavanaugh JM, et al. Detection of hemorrhagic and axonal pathology in mild traumatic brain injury using advanced MRI: implications for neurorehabilitation. NeuroRehabilitation. 2012;31:261–79.

    PubMed  Google Scholar 

  10. Bian W, Hess CP, Chang SM, Nelson SJ, Lupo JM. Susceptibility-weighted MR imaging of radiation therapy-induced cerebral microbleeds in patients with glioma: a comparison between 3T and 7T. Neuroradiology. 2014;56:91–6.

    Article  PubMed  Google Scholar 

  11. Bullitt E, Ewend M, Vredenburgh J, Friedman A, Lin W, Wilber K, et al. Computerized assessment of vessel morphological changes during treatment of glioblastoma multiforme: report of a case imaged serially by MRA over four years. Neuroimage. 2009;47 Suppl 2:T143–51.

    Article  PubMed  Google Scholar 

  12. Chastain CA, Oyoyo UE, Zipperman M, Joo E, Ashwal S, Shutter LA, et al. Predicting outcomes of traumatic brain injury by imaging modality and injury distribution. J Neurotrauma. 2009;26:1183–96.

    Article  PubMed  Google Scholar 

  13. Chavhan GB, Babyn PS, Thomas B, Shroff MM, Haacke EM. Principles, techniques, and applications of T2*-based MR imaging and its special applications. Radiographics. 2009;29:1433–49.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Choi JI, Kim BJ, Ha SK, Kim SH, Lim DJ, Kim SD. Comparison of subgroups based on hemorrhagic lesions between SWI and FLAIR in pediatric traumatic brain injury. Childs Nerv Syst. 2014;30:1011–9.

    Article  PubMed  Google Scholar 

  15. Colbert CA, Holshouser BA, Aaen GS, Sheridan C, Oyoyo U, Kido D, et al. Value of cerebral microhemorrhages detected with susceptibility-weighted MR imaging for prediction of long-term outcome in children with nonaccidental trauma. Radiology. 2010;256:898–905.

    Article  PubMed  Google Scholar 

  16. Deistung A, Schweser F, Wiestler B, Abello M, Roethke M, Sahm F, et al. Quantitative susceptibility mapping differentiates between blood depositions and calcifications in patients with glioblastoma. PLoS One. 2013;8, e57924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Di Ieva A, Lam T, Alcaide Leon P, Bharatha A, Montanera W, Cusimano MD. Magnetic resonance susceptibility weighted imaging (SWI) in neurosurgery: current applications and future perspectives. J Neurosurg. 2015;123(6):1463–75.

    Article  PubMed  Google Scholar 

  18. Di Ieva A, Le Reste PJ, Carsin-Nicol B, Ferre JC, Cusimano MD. Diagnostic value of fractal analysis for the differentiation of brain tumors using 3-tesla MR susceptibility-weighted imaging. Neurosurgery. 2016.

    Google Scholar 

  19. Di Ieva A, Göd S, Grabner G, Grizzi F, Sherif C, Matula C, et al. Three-dimensional susceptibility-weighted imaging at 7 T using fractal-based quantitative analysis to grade gliomas. Neuroradiology. 2013;55:35–40.

    Article  PubMed  Google Scholar 

  20. Di Ieva A. Fractal analysis of microvascular networks in malignant brain tumors. Clin Neuropathol. 2012;31:342–51.

    Article  PubMed  Google Scholar 

  21. Di Ieva A, Matula C, Grizzi F, Grabner G, Trattnig S, Tschabitscher M. Fractal analysis of the susceptibility weighted imaging patterns in malignant brain tumors during antiangiogenic treatment: technical report on four cases serially imaged by 7 T magnetic resonance during a period of four weeks. World Neurosurg. 2012;77:785.e11–21.

    Google Scholar 

  22. Di Ieva A, Grizzi F, Sherif C, Matula C, Tschabitscher M. Angioarchitectural heterogeneity in human glioblastoma multiforme: a fractal-based histopathological assessment. Microvasc Res. 2011;81:222–30.

    Article  PubMed  Google Scholar 

  23. Di Ieva A, Tschabitscher M, Galzio RJ, Grabner G, Kronnerwetter C, et al. The veins of the nucleus dentatus: anatomical and radiological findings. Neuroimage. 2011;54:74–9.

    Article  PubMed  Google Scholar 

  24. Ding Y, Xing Z, Liu B, Lin X, Cao D. Differentiation of primary central nervous system lymphoma from high-grade glioma and brain metastases using susceptibility-weighted imaging. Brain Behav. 2014;4:841–9.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Fellah S, Girard N, Chinot O, Cozzone PJ, Callot V. Early evaluation of tumoral response to antiangiogenic therapy by arterial spin labeling perfusion magnetic resonance imaging and susceptibility weighted imaging in a patient with recurrent glioblastoma receiving bevacizumab. J Clin Oncol. 2011;29:e308–11.

    Article  PubMed  Google Scholar 

  26. Friedman HS, Prados MD, Wen PY, Mikkelsen T, Schiff D, Abrey LE, et al. Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J Clin Oncol. 2009;27:4733–40.

    Article  CAS  PubMed  Google Scholar 

  27. Furtner J, Schopf V, Preusser M, Asenbaum U, Woitek R, Wohrer A, et al. Non-invasive assessment of intratumoral vascularity using arterial spin labeling: a comparison to susceptibility-weighted imaging for the differentiation of primary cerebral lymphoma and glioblastoma. Eur J Radiol. 2014;83:806–10.

    Article  CAS  PubMed  Google Scholar 

  28. Geurts BH, Andriessen TM, Goraj BM, Vos PE. The reliability of magnetic resonance imaging in traumatic brain injury lesion detection. Brain Inj. 2012;26:1439–50.

    Article  PubMed  Google Scholar 

  29. Grabner G, Nobauer I, Elandt K, Kronnerwetter C, Woehrer A, Marosi C, et al. Longitudinal brain imaging of five malignant glioma patients treated with bevacizumab using susceptibility-weighted magnetic resonance imaging at 7 T. Magn Reson Imaging. 2012;30:139–47.

    Article  CAS  PubMed  Google Scholar 

  30. Gramsch C, Goricke SL, Behrens F, Zimmer L, Schadendorf D, Krasny A, et al. Isolated cerebral susceptibility artefacts in patients with malignant melanoma: metastasis or not? Eur Radiol. 2013;23:2622–7.

    Article  PubMed  Google Scholar 

  31. Haacke EM, Lai S, Yablonskiy DA, Lin W. In vivo validation of the bold mechanism: a review of signal changes in gradient echo functional MRI in the presence of flow. Int J Imaging Syst Technol. 1995;6(2–3):153–63.

    Article  Google Scholar 

  32. Haacke EM, Liu S, Buch S, Zheng W, Wu D, Ye Y. Quantitative susceptibility mapping: current status and future directions. Magn Reson Imaging. 2015;33:1–25.

    Article  PubMed  Google Scholar 

  33. Haacke EM, Xu Y, Cheng YC, Reichenbach JR. Susceptibility weighted imaging (SWI). Magn Reson Med. 2004;52:612–8.

    Article  PubMed  Google Scholar 

  34. Hasiloglu ZI, Albayram S, Selcuk H, Ceyhan E, Delil S, Arkan B, et al. Cerebral microhemorrhages detected by susceptibility-weighted imaging in amateur boxers. AJNR Am J Neuroradiol. 2011;32:99–102.

    CAS  PubMed  Google Scholar 

  35. Helmer KG, Pasternak O, Fredman E, Preciado RI, Koerte IK, Sasaki T, et al. Hockey concussion education project, part 1. susceptibility-weighted imaging study in male and female ice hockey players over a single season. J Neurosurg. 2014;120:864–72.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Henry LC, Burkhart SO, Elbin RJ, Agarwal V, Kontos AP. Traumatic axonal injury and persistent emotional lability in an adolescent following moderate traumatic brain injury: a case study. J Clin Exp Neuropsychol. 2015;37:439–54.

    Article  PubMed  Google Scholar 

  37. Hori M, Mori H, Aoki S, Abe O, Masumoto T, Kunimatsu S, et al. Three-dimensional susceptibility-weighted imaging at 3 T using various image analysis methods in the estimation of grading intracranial gliomas. Magn Reson Imaging. 2010;28:594–8.

    Article  PubMed  Google Scholar 

  38. Huang LC, Wu MN, Chen CH, Huang P. Susceptibility-weighted imaging in patient with consciousness disturbance after traffic accident. Am J Emerg Med. 2013;31:261.e1–3.

    Google Scholar 

  39. Huang YL, Kuo YS, Tseng YC, Chen DY, Chiu WT, Chen CJ. Susceptibility-weighted MRI in mild traumatic brain injury. Neurology. 2015;84:580–5.

    Article  PubMed  Google Scholar 

  40. Islam A, Reza SM, Iftekharuddin KM. Multifractal texture estimation for detection and segmentation of brain tumors. IEEE Trans Biomed Eng. 2013;60:3204–15.

    Article  PubMed  Google Scholar 

  41. Iwamura A, Taoka T, Fukusumi A, Sakamoto M, Miyasaka T, Ochi T, et al. Diffuse vascular injury: convergent-type hemorrhage in the supratentorial white matter on susceptibility-weighted image in cases of severe traumatic brain damage. Neuroradiology. 2012;54:335–43.

    Article  PubMed  Google Scholar 

  42. Jaffar MA, Ain Q, Choi TS. Tumor detection from enhanced magnetic resonance imaging using fuzzy curvelet. Microsc Res Tech. 2012;75:499–504.

    Article  PubMed  Google Scholar 

  43. Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science. 2005;307:58–62.

    Article  CAS  PubMed  Google Scholar 

  44. Jenkinson MD, du Plessis DG, Smith TS, Joyce KA, Warnke PC, Walker C. Histological growth patterns and genotype in oligodendroglial tumours: correlation with MRI features. Brain. 2006;129:1884–91.

    Article  PubMed  Google Scholar 

  45. Jurkiewicz E, Pakula-Kosciesza I, Barszcz S, Nowak K, Swieszkowska E, Roszkowski M. Usefulness of magnetic resonance imaging with SWI sequence (susceptibility-weighted imaging) in diagnosing cerebral hemosiderosis – case report. Pol J Radiol. 2010;75:47–50.

    PubMed  PubMed Central  Google Scholar 

  46. Keightley ML, Chen JK, Ptito A. Examining the neural impact of pediatric concussion: a scoping review of multimodal and integrative approaches using functional and structural MRI techniques. Curr Opin Pediatr. 2012;24:709–16.

    Article  CAS  PubMed  Google Scholar 

  47. Kim HS, Jahng GH, Ryu CW, Kim SY. Added value and diagnostic performance of intratumoral susceptibility signals in the differential diagnosis of solitary enhancing brain lesions: preliminary study. AJNR Am J Neuroradiol. 2009;30:1574–9.

    Article  CAS  PubMed  Google Scholar 

  48. Lahmiri S, Boukadoum M. Automatic brain MR images diagnosis based on edge fractal dimension and spectral energy signature. Conf Proc IEEE Eng Med Biol Soc. 2012;2012:6243–6.

    PubMed  Google Scholar 

  49. Li C, Ai B, Li Y, Qi H, Wu L. Susceptibility-weighted imaging in grading brain astrocytomas. Eur J Radiol. 2010;75:e81–5.

    Article  PubMed  Google Scholar 

  50. Li X, Zhu Y, Kang H, Zhang Y, Liang H, Wang S, et al. Glioma grading by microvascular permeability parameters derived from dynamic contrast-enhanced MRI and intratumoral susceptibility signal on susceptibility weighted imaging. Cancer Imaging. 2015;15:4, 015-0039-z.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Liu G, Ghimire P, Pang H, Wu G, Shi H. Improved sensitivity of 3.0 tesla susceptibility-weighted imaging in detecting traumatic bleeds and its use in predicting outcomes in patients with mild traumatic brain injury. Acta Radiol. 2015;56:1256–63.

    Google Scholar 

  52. Liu J, Xia S, Hanks RA, Wiseman NM, Peng C, Zhou S, et al. Susceptibility weighted imaging and mapping of micro-hemorrhages and major deep veins after traumatic brain injury. J Neurotrauma. 2016;33:10–21.

    Google Scholar 

  53. Lobel U, Sedlacik J, Sabin ND, Kocak M, Broniscer A, Hillenbrand CM, et al. Three-dimensional susceptibility-weighted imaging and two-dimensional T2*-weighted gradient-echo imaging of intratumoral hemorrhages in pediatric diffuse intrinsic pontine glioma. Neuroradiology. 2010;52:1167–77.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Lou X, Tian C, Chen Z, Ma L. Differential diagnosis of infarct-like intracranial ectopic germinomas and subacute lacunar infarct on susceptibility-weighted imaging. J Magn Reson Imaging. 2012;36:92–8.

    Article  PubMed  Google Scholar 

  55. Lou X, Ma L, Wang FL, Tang ZP, Huang H, Cai YQ, et al. Susceptibility-weighted imaging in the diagnosis of early basal ganglia germinoma. AJNR Am J Neuroradiol. 2009;30:1694–9.

    Article  CAS  PubMed  Google Scholar 

  56. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK. WHO classification of tumours of the central nervous system. 4th ed. Lyon: International Agency for Research on Cancer (IARC); 2007.

    Google Scholar 

  57. Lupo JM, Essock-Burns E, Molinaro AM, Cha S, Chang SM, Butowski N, et al. Using susceptibility-weighted imaging to determine response to combined anti-angiogenic, cytotoxic, and radiation therapy in patients with glioblastoma multiforme. Neuro Oncol. 2013;15:480–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lupo JM, Chuang CF, Chang SM, Barani IJ, Jimenez B, Hess CP, et al. 7-tesla susceptibility-weighted imaging to assess the effects of radiotherapy on normal-appearing brain in patients with glioma. Int J Radiat Oncol Biol Phys. 2012;82:e493–500.

    Article  PubMed  Google Scholar 

  59. Maderwald S, Thurling M, Kuper M, Theysohn N, Muller O, Beck A, et al. Direct visualization of cerebellar nuclei in patients with focal cerebellar lesions and its application for lesion-symptom mapping. Neuroimage. 2012;63:1421–31.

    Article  CAS  PubMed  Google Scholar 

  60. Maugans TA, Farley C, Altaye M, Leach J, Cecil KM. Pediatric sports-related concussion produces cerebral blood flow alterations. Pediatrics. 2012;129:28–37.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Menon G, Patro SN, Krishnakumar K, Kesavadas C, Nair S, Radhakrishnan VV. Subfrontal gangliocytoma masquerading as olfactory groove meningioma. Br J Neurosurg. 2009;23:79–82.

    Article  CAS  PubMed  Google Scholar 

  62. Moenninghoff C, Kraff O, Maderwald S, Umutlu L, Theysohn JM, Ringelstein A, et al. Diffuse axonal injury at ultra-high field MRI. PLoS One. 2015;10, e0122329.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Moenninghoff C, Kraff O, Schlamann M, Ladd ME, Katsarava Z, Gizewski ER. Assessing a dysplastic cerebellar gangliocytoma (Lhermitte-Duclos disease) with 7T MR imaging. Korean J Radiol. 2010;11:244–8.

    Google Scholar 

  64. Moenninghoff C, Maderwald S, Theysohn JM, Kraff O, Ladd ME, El Hindy N, et al. Imaging of adult astrocytic brain tumours with 7 T MRI: preliminary results. Eur Radiol. 2010;20:704–13.

    Article  PubMed  Google Scholar 

  65. Nishiguchi T, Iwakiri T, Hayasaki K, Ohsawa M, Yoneda T, Mitsuhashi Y, et al. Post-embolisation susceptibility changes in giant meningiomas: multiparametric histogram analysis using non-contrast-enhanced susceptibility-weighted PRESTO, diffusion-weighted and perfusion-weighted imaging. Eur Radiol. 2013;23:551–61.

    Article  PubMed  Google Scholar 

  66. Niwa T, de Vries LS, Benders MJ, Takahara T, Nikkels PG, Groenendaal F. Punctate white matter lesions in infants: new insights using susceptibility-weighted imaging. Neuroradiology. 2011;53:669–79.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Norden AD, Young GS, Setayesh K, Muzikansky A, Klufas R, Ross GL, et al. Bevacizumab for recurrent malignant gliomas: efficacy, toxicity, and patterns of recurrence. Neurology. 2008;70:779–87.

    Article  CAS  PubMed  Google Scholar 

  68. Nossek E, Bashat DB, Artzi M, Rosenberg K, Lichter I, Shtern O, et al. The role of advanced MR methods in the diagnosis of cerebral amyloidoma. Amyloid. 2009;16:94–8.

    Article  PubMed  Google Scholar 

  69. Park JH, Park SW, Kang SH, Nam TK, Min BK, Hwang SN. Detection of traumatic cerebral microbleeds by susceptibility-weighted image of MRI. J Korean Neurosurg Soc. 2009;46:365–9.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Park SM, Kim HS, Jahng GH, Ryu CW, Kim SY. Combination of high-resolution susceptibility-weighted imaging and the apparent diffusion coefficient: added value to brain tumour imaging and clinical feasibility of non-contrast MRI at 3 T. Br J Radiol. 2010;83:466–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Peters S, Pahl R, Claviez A, Jansen O. Detection of irreversible changes in susceptibility-weighted images after whole-brain irradiation of children. Neuroradiology. 2013;55:853–9.

    Article  CAS  PubMed  Google Scholar 

  72. Peters S, Knoss N, Wodarg F, Cnyrim C, Jansen O. Glioblastomas vs. lymphomas: more diagnostic certainty by using susceptibility-weighted imaging (SWI). Röfo. 2012;184:713–8.

    CAS  PubMed  Google Scholar 

  73. Pinker K, Noebauer-Huhmann IM, Stavrou I, Hoeftberger R, Szomolanyi P, Karanikas G, et al. High-resolution contrast-enhanced, susceptibility-weighted MR imaging at 3T in patients with brain tumors: correlation with positron-emission tomography and histopathologic findings. AJNR Am J Neuroradiol. 2007;28:1280–6.

    Article  CAS  PubMed  Google Scholar 

  74. Radbruch A, Graf M, Kramp L, Wiestler B, Floca R, Baumer P, et al. Differentiation of brain metastases by percentagewise quantification of intratumoral-susceptibility-signals at 3Tesla. Eur J Radiol. 2012;81:4064–8.

    Article  PubMed  Google Scholar 

  75. Reichenbach JR, Venkatesan R, Schillinger DJ, Kido DK, Haacke EM. Small vessels in the human brain: MR venography with deoxyhemoglobin as an intrinsic contrast agent. Radiology. 1997;204:272–7.

    Article  CAS  PubMed  Google Scholar 

  76. Russo C. Brightness progressive normalization. 2012. Webpage: http://www.fractal-lab.org/Downloads/bpn_algorithm.html. Accessed on Feb 2016.

  77. Schweser F, Deistung A, Lehr BW, Reichenbach JR. Differentiation between diamagnetic and paramagnetic cerebral lesions based on magnetic susceptibility mapping. Med Phys. 2010;37:5165–78.

    Article  PubMed  Google Scholar 

  78. Sehgal V, Delproposto Z, Haddar D, Haacke EM, Sloan AE, Zamorano LJ, et al. Susceptibility-weighted imaging to visualize blood products and improve tumor contrast in the study of brain masses. J Magn Reson Imaging. 2006;24:41–51.

    Article  PubMed  Google Scholar 

  79. Sigmund GA, Tong KA, Nickerson JP, Wall CJ, Oyoyo U, Ashwal S. Multimodality comparison of neuroimaging in pediatric traumatic brain injury. Pediatr Neurol. 2007;36:217–26.

    Article  PubMed  Google Scholar 

  80. Sorensen AG, Batchelor TT, Zhang WT, Chen PJ, Yeo P, Wang M, et al. A “vascular normalization index” as potential mechanistic biomarker to predict survival after a single dose of cediranib in recurrent glioblastoma patients. Cancer Res. 2009;69:5296–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Spitz G, Maller JJ, Ng A, O’Sullivan R, Ferris NJ, Ponsford JL. Detecting lesions after traumatic brain injury using susceptibility weighted imaging: a comparison with fluid-attenuated inversion recovery and correlation with clinical outcome. J Neurotrauma. 2013;30:2038–50.

    Article  PubMed  Google Scholar 

  82. Toh CH, Wei KC, Chang CN, Hsu PW, Wong HF, Ng SH, et al. Differentiation of pyogenic brain abscesses from necrotic glioblastomas with use of susceptibility-weighted imaging. AJNR Am J Neuroradiol. 2012;33:1534–8.

    Article  CAS  PubMed  Google Scholar 

  83. Tong KA, Ashwal S, Holshouser BA, Nickerson JP, Wall CJ, Shutter LA, et al. Diffuse axonal injury in children: clinical correlation with hemorrhagic lesions. Ann Neurol. 2004;56:36–50.

    Article  PubMed  Google Scholar 

  84. Tong KA, Ashwal S, Holshouser BA, Shutter LA, Herigault G, Haacke EM, et al. Hemorrhagic shearing lesions in children and adolescents with posttraumatic diffuse axonal injury: improved detection and initial results. Radiology. 2003;227:332–9.

    Article  PubMed  Google Scholar 

  85. Toth A, Kovacs N, Perlaki G, Orsi G, Aradi M, Komaromy H, et al. Multi-modal magnetic resonance imaging in the acute and sub-acute phase of mild traumatic brain injury: can we see the difference? J Neurotrauma. 2013;30:2–10.

    Article  PubMed  Google Scholar 

  86. Vossough A, Ziai P, Chatzkel JA. Red nucleus degeneration in hypertrophic olivary degeneration after pediatric posterior fossa tumor resection: use of susceptibility-weighted imaging (SWI). Pediatr Radiol. 2012;42:481–5.

    Article  PubMed  Google Scholar 

  87. Wang M, Dai Y, Han Y, Haacke EM, Dai J, Shi D. Susceptibility weighted imaging in detecting hemorrhage in acute cervical spinal cord injury. Magn Reson Imaging. 2011;29:365–73.

    Article  PubMed  Google Scholar 

  88. Wieczorek-Pastusiak J, Kocinski M, Razniewski M, Strzelecki M, Stefanczyk L, Majos A. An attempt toward objective assessment of brain tumor vascularization using susceptibility weighted imaging and dedicated computer program – a preliminary study. Pol J Radiol. 2013;78:50–6.

    PubMed  PubMed Central  Google Scholar 

  89. Wu Z, Li S, Lei J, An D, Haacke EM. Evaluation of traumatic subarachnoid hemorrhage using susceptibility-weighted imaging. AJNR Am J Neuroradiol. 2010;31:1302–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wu Z, Mittal S, Kish K, Yu Y, Hu J, Haacke EM. Identification of calcification with MRI using susceptibility-weighted imaging: a case study. J Magn Reson Imaging. 2009;29:177–82.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Yamada N, Imakita S, Sakuma T, Takamiya M. Intracranial calcification on gradient-echo phase image: depiction of diamagnetic susceptibility. Radiology. 1996;198:171–8.

    Article  CAS  PubMed  Google Scholar 

  92. Zeng QS, Kang XS, Li CF, Zhou GY. Detection of hemorrhagic hypointense foci in radiation injury region using susceptibility-weighted imaging. Acta Radiol. 2011;52:115–9.

    Article  PubMed  Google Scholar 

  93. Zhang W, Zhao J, Guo D, Zhong W, Shu J, Luo Y. Application of susceptibility weighted imaging in revealing intratumoral blood products and grading gliomas. J Radiol. 2010;91:485–90.

    Article  CAS  PubMed  Google Scholar 

  94. Zhu Y, Yan H. Computerized tumor boundary detection using a hopfield neural network. IEEE Trans Med Imaging. 1997;16:55–67.

    Article  CAS  PubMed  Google Scholar 

  95. Zook JM, Iftekharuddin KM. Statistical analysis of fractal-based brain tumor detection algorithms. Magn Reson Imaging. 2005;23:671–8.

    Article  PubMed  Google Scholar 

  96. Zulfiqar M, Dumrongpisutikul N, Intrapiromkul J, Yousem DM. Detection of intratumoral calcification in oligodendrogliomas by susceptibility-weighted MR imaging. AJNR Am J Neuroradiol. 2012;33:858–64.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Di Ieva MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Di Ieva, A. (2016). Computational Fractal-Based Analysis of MR Susceptibility-Weighted Imaging (SWI) in Neuro-oncology and Neurotraumatology. In: Di Ieva, A. (eds) The Fractal Geometry of the Brain. Springer Series in Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3995-4_20

Download citation

Publish with us

Policies and ethics