Skip to main content

Bridging the Gap of Standardized Animals Models for Blast Neurotrauma: Methodology for Appropriate Experimental Testing

  • Protocol
  • First Online:
Injury Models of the Central Nervous System

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1462))

Abstract

Recent military combat has heightened awareness to the complexity of blast-related traumatic brain injuries (bTBI). Experiments using animal, cadaver, or biofidelic physical models remain the primary measures to investigate injury biomechanics as well as validate computational simulations, medical diagnostics and therapies, or protection technologies. However, blast injury research has seen a range of irregular and inconsistent experimental methods for simulating blast insults generating results which may be misleading, cannot be cross-correlated between laboratories, or referenced to any standard for exposure. Both the US Army Medical Research and Materiel Command and the National Institutes of Health have noted that there is a lack of standardized preclinical models of TBI. It is recommended that the blast injury research community converge on a consistent set of experimental procedures and reporting of blast test conditions. This chapter describes the blast conditions which can be recreated within a laboratory setting and methodology for testing in vivo models within the appropriate environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Owens BD, Kragh JF Jr, Macaitis J, Svoboda SJ, Wenke JC (2007) Characterization of extremity wounds in OIF and OEF. J Orthop Trauma 21:254–257

    Article  PubMed  Google Scholar 

  2. Macgregor AJ, Dougherty AL, Galarneau MR (2011) Injury-specific correlates of combat-related traumatic brain injury in Operation Iraqi Freedom. J Head Trauma Rehabil 26:312–318

    Article  PubMed  Google Scholar 

  3. Murray CK, Reynolds JC, Schroeder JM, Harrison MB, Evans OM, Hospenthal DR (2005) Spectrum of care provided at an echelon II medical unit during Operation Iraqi Freedom. Mil Med 170:516–520

    Article  PubMed  Google Scholar 

  4. Elder GA, Mitsis EM, Ahlers ST, Cristian A (2010) Blast-induced mild traumatic brain injury. Psychiatr Clin North Am 33:757–781

    Article  PubMed  Google Scholar 

  5. Hoffman SW, Harrison CR (2009) The interaction between psychological health and traumatic brain injury: a neuroscience perspective. Clin Neuropsychol 8:1400–1415

    Article  Google Scholar 

  6. Hoge CW, McGurk D, Thomas JL, Cox AL, Engel CC, Castro CA (2008) Mild traumatic brain injury in U.S. soldiers returning from Iraq. N Engl J Med 358:453–463

    Article  CAS  PubMed  Google Scholar 

  7. Arciniegas DB (2011) Addressing neuropsychiatric disturbances during rehabilitation after traumatic brain injury: current and future methods. Dialogues Clin Neurosci 13:325–345

    PubMed  PubMed Central  Google Scholar 

  8. Belanger HG, Kretzmer T, Yoash-Gantz R, Pickett T, Tupler LA (2009) Cognitive sequelae of blast-related versus other mechanisms of brain trauma. J Int Neuropsychol Soc 15:1–8

    Article  PubMed  Google Scholar 

  9. Halbauer JD, Ashford JW, Zeitzer JM, Adamson MM, Lew HL, Yesavage JA (2009) Neuropsychiatric diagnosis and management of chronic sequelae of war-related mild to moderate traumatic brain injury. J Rehabil Res Dev 46:757–796

    Article  PubMed  Google Scholar 

  10. Riggio S (2011) Traumatic brain injury and its neurobehavioral sequelae. Neurol Clin 29:35–47

    Article  PubMed  Google Scholar 

  11. Warden D (2006) Military TBI during the Iraq and Afghanistan wars. J Head Trauma Rehabil 21:398–402

    Article  PubMed  Google Scholar 

  12. Rohling ML, Meyers JE, Millis SR (2003) Neuropsychological impairment following traumatic brain injury: a dose response analysis. Clin Neuropsychol 17:289–302

    Article  PubMed  Google Scholar 

  13. Kochanek PM, Bauman RA, Long JB, Dixon CR, Jenkins LW (2009) A critical problem begging for new insight and new therapies. J Neurotrauma 26:813–814

    Article  PubMed  PubMed Central  Google Scholar 

  14. Cawley PJ, Mokadam NA (2010) Delayed complications from exposure to improvised explosive devices. Ann Intern Med 153:278–279

    Article  PubMed  Google Scholar 

  15. Miller G (2011) Neuropathology. A battle no soldier wants to fight. Science 29:517–519

    Article  Google Scholar 

  16. Levin HS, Wilde E, Troyanskaya M, Petersen NJ, Scheibel R, Newsome M, Radaideh M, Wu T, Yallampalli R, Chu Z, Li X (2010) Diffusion tensor imaging of mild to moderate blast-related traumatic brain injury and its sequelae. J Neurotrauma 27:683–694

    Article  PubMed  Google Scholar 

  17. Heltemes KJ, Dougherty AL, MacGregor AJ, Galarneau MR (2011) Alcohol abuse disorders among U.S. service members with mild traumatic brain injury. Mil Med 176:147–150

    Article  PubMed  Google Scholar 

  18. Diaz-Arrastia R, Kochanek PM, Bergold P, Kenney K, Marx CE, Grimes CJ, Loh LT, Adam LT, Oskvig D, Curley KC, Salzer W (2014) Pharmacotherapy of traumatic brain injury: state of the science and the road forward: report of the Department of Defense Neurotrauma Pharmacology Workgroup. J Neurotrauma 15:135–158

    Article  Google Scholar 

  19. Bethe HA, Fuchs K, Hirshfelder JO, Magee JL, Peierls RE, von Neumann J (1947) Blast wave. Los Alamos Scientific Laboratory, LA-2000, Physics & Mathematics, TID-4500, 13th edn., Suppl

    Google Scholar 

  20. Brode HL (1959) Blast wave from a spherical charge. Phys Fluids 2:217

    Article  Google Scholar 

  21. Dewey JM (1971) The air velocity in blast waves from T.N.T. explosions. Proc Roy Soc Lond A 324:275–299

    Article  Google Scholar 

  22. Sternberg HM, Hurwitz H (1976) Calculated spherical shock waves produced by condensed explosives in air and water. Proc. 6th Symp (Int) on Detonation, ACR-221, Office of Naval Research, Arlington VA, NSWC, White Oak, 528–39

    Google Scholar 

  23. Glasstone S, Dolan PJ (1977) The effects of nuclear weapons, 3rd edn., US Dept of Defense & Energy Research & Development Agency. Available at: http://www.atomicarchive.com/Docs/Effects/index.shtml

  24. Kingery CN, Bulmash G (1984) Airblast parameters from TNT spherical air burst and hemispherical surface burst, ARBRL-TR-02555. Ballistic Research Laboratory, Aberdeen Proving Ground, MD

    Google Scholar 

  25. Glass II, Hall JG (1959) Handbook of supersonic aerodynamics, Section 18 Shock tubes. NAVORD Report, vol 6. Bureau of Ordnance Publication, Washington, DC, p 1488

    Google Scholar 

  26. Iremonger M (1997) Physics of detonations and blast-waves. In: Cooper GJ, Dudley HAF, Gann DS et al (eds) Scientific foundation of trauma, vol 1. Butterworth-Heinemann, Oxford, pp 189–199

    Google Scholar 

  27. Celander H, Clemedson CJ, Ericsson U, Hultman H (1955) The use of compressed-air-operated shock tube for physiological blast research. Acta Physiol Scand 32:6–13

    Article  Google Scholar 

  28. Celander H, Clemedson CJ, Ericsson UA, Hultman HI (1955) A study on the relation between the duration of the shock wave and the severity of the blast injury produced by it. Acta Physiol Scand 33:14–18

    Article  CAS  PubMed  Google Scholar 

  29. Richmond DR, Wetherbe MB, Taborelli RV, Sanchez RT, Sherping F, Goldizen VC, White CS (1959) Shock tube studies of the effects of sharp-rising, long-duration overpressures on biological systems. Progress Report AEC Contract No. AT(29-1)-1242, TID-6056. The Lovelace Foundation for Medical Education and Research, Albuquerque, NM

    Google Scholar 

  30. Ritzel DV, Parks SA, Roseveare J, Rude G, Sawyer T (2011) Experimental blast simulation for injury studies. NATO/RTO HFM-207 Symposium, Halifax, Canada

    Google Scholar 

  31. Cho HJ, Sajja VSS, VandeVord PJ, Lee YW (2013) Blast induces oxidative stress, inflammation, neuronal loss and subsequent short-term memory impairment in rats. Neuroscience 3:9–20

    Article  Google Scholar 

  32. Sajja VSS, Ereifej ES, VandeVord PJ (2014) Hippocampal vulnerability and subacute response following varied blast magnitudes. Neurosci Lett 6:33–37

    Article  Google Scholar 

  33. Sajja VSS, Hubbard WB, VandeVord PJ (2015) Subacute oxidative stress and glial reactivity in the amygdala are associated with increased anxiety following blast neurotrauma. Shock 44:71

    Article  CAS  PubMed  Google Scholar 

  34. Chai JK, Liu W, Deng HP, Cai JH, Hu QG, Zou XF, Shen CA, Yin HN, Han YF, Zhang XB, Chi YF, Ma L, Sun TJ, Feng R, Lan YT (2013) A novel model of burn-blast combined injury and its phasic changes of blood coagulation in rats. Shock 40:297–302

    Article  PubMed  Google Scholar 

  35. Courtney AC, Andrusiv LP, Courtney MW (2012) Oxy-acetylene driven laboratory scale shock tubes for studying blast wave effects. Rev Sci Instrum 83:045111-1–045111-7

    Article  Google Scholar 

  36. Reneer DV, Hisel RD, Hoffman JM, Kryscio RJ, Lusk BT, Geddes JW (2011) A multi-mode shock tube for investigation of blast-induced traumatic brain injury. J Neurotrauma 28:95–104

    Article  PubMed  PubMed Central  Google Scholar 

  37. Chavko M, Watanabe T, Adeeb S, Lankasky J, Ahlers ST, McCarron RM (2011) Relationship between orientation to a blast and pressure wave propagation inside the rat brain. J Neurosci Methods 195:61–66

    Article  PubMed  Google Scholar 

  38. Goldstein LE, Fisher AM, Tagge CA, Zhang XL, Velisek L, Sullivan JA, Upreti C, Kracht JM, Ericsson M, Wojnarowicz MW, Goletiani CJ, Maglakelidze GM, Casey N, Moncaster JA, Minaeva O, Moir RD, Nowinski CJ, Stern RA, Cantu RC, Geiling J, Blusztajn JK, Wolozin BL, Ikezu T, Stein TD, Budson AE, Kowall NW, Chargin D, Sharon A, Saman S, Hall GF, Moss WC, Cleveland RO, Tanzi RE, Stanton PK, McKee AC (2012) Chronic traumatic encephalopathy in blast-exposed military veterans and a blast neurotrauma mouse model. Sci Transl Med 4:60

    Google Scholar 

  39. Courtney MW, Courtney AC (2011) Working toward exposure thresholds for blast-induced traumatic brain injury: thoracic and acceleration mechanisms. Neuroimage 54(Suppl 1):S55–S61

    Article  PubMed  Google Scholar 

  40. Rafaels K, Bass CR, Salzar RS, Panzer MB, Woods W, Feldman S, Cummings T, Capehart B (2011) Survival risk assessment for primary blast exposures to the head. J Neurotrauma 28:2319–2328

    Article  PubMed  Google Scholar 

  41. Shridharani JK, Wood GW, Panzer MB, Capehart BP, Nyein MK, Radovitzky RA, Bass CR (2012) Porcine head response to blast. Front Neurol 3:1–12

    Article  Google Scholar 

  42. Gullotti DM, Beamer M, Panzer MB, Chen YC, Patel TP, Yu A, Jaumard N, Winkelstein B, Bass CR, Morrison B, Meaney DF (2014) Significant head accelerations can influence immediate neurological impairments in a murine model of blast-induced traumatic brain injury. J Biomech Eng 136:091004

    Article  PubMed  Google Scholar 

  43. Panzer MB, Wood GW, Bass CR (2014) Scaling in neurotrauma: how do we apply animal experiments to people? Exp Neurol 14:120–126

    Article  Google Scholar 

  44. Golub VV (1994) Development of shock wave and vortex structures in unsteady jets. Shock Waves 3:279–285

    Article  Google Scholar 

  45. Minota T (1998) Shock/vortex interaction in a flow field behind a shock wave emitted from a shock-tube. Proc. of 2nd Int. Workshop on Shock-Wave/Vortex Interaction, 2–11

    Google Scholar 

  46. Skews BW (1967) The perturbed region behind a diffracting shock wave. J Fluid Mech 29:705–719

    Article  Google Scholar 

  47. Kitajima S, Iwamoto J, Tamura E (2009) A study on the behavior of shock wave and vortex ring dischargeed from a pipe. Proc of 10th Annual Internations Conference of Fluid Control, Measurement and Visualization

    Google Scholar 

  48. Kainuma M, Havermann M, Sun M, Takayama K (2005) Effects of the shock tube open-end shape on vortex loops released from it. Shock Waves, 505–10

    Google Scholar 

  49. Baird JP (1987) Supersonic vortex rings. Proc R Soc Lond A 409:1836

    Article  Google Scholar 

  50. Alphonse V, Sajja VSS, Kemper AR, Ritzel DV, Duma SM, VandeVord PJ (2014) Membrane characteristics for biological blast overpressure testing using blast simulators. Biomed Sci Instrum 50:248

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pamela J. VandeVord Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

VandeVord, P.J., Leonardi, A.D.C., Ritzel, D. (2016). Bridging the Gap of Standardized Animals Models for Blast Neurotrauma: Methodology for Appropriate Experimental Testing. In: Kobeissy, F., Dixon, C., Hayes, R., Mondello, S. (eds) Injury Models of the Central Nervous System. Methods in Molecular Biology, vol 1462. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3816-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3816-2_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3814-8

  • Online ISBN: 978-1-4939-3816-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics