Skip to main content

Social Endophenotypes in Mouse Models of Psychiatric Disease

  • Chapter
  • First Online:
Animal Models of Behavior Genetics

Abstract

Psychiatric diseases encompass some of the most complex and debilitating afflictions known to man. Common to several of these diseases, namely autism spectrum disorders (ASDs) and schizophrenia, are impairments in socio-communicative behavior. These impairments have been proposed as candidate endophenotypes of disease processes, being present in prodromal and active stages of disease, as well as in undiagnosed relatives. The genetic bases for these diseases and associated socio-communicative endophenotypes make them highly amenable to study using mouse models. In this review, socio-communicative endophenotypes of two psychiatric diseases—ASDs and schizophrenia—are discussed and translated to measurable behavior in mice. Social interaction and ultrasonic vocalization behavioral paradigms serve as reliable methods for assessing social and communicative functioning in mice, respectively. Several of these paradigms will be overviewed alongside evidence of abnormalities in genetic mouse models of psychiatric disease.

“…the difference in mind between man and the higher animals, great as it is, certainly is one of degree and not of kind. We have seen that the senses and intuitions, the various emotions and faculties, such as love, memory, attention, curiosity, imitation, reason, etc., of which man boasts, may be found in an incipient, or even sometimes in a well-developed condition, in the lower animals.” Charles Darwin, The Descent of Man, page 86 (1871).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Addington, J., & Addington, D. (2000). Neurocognitive and social functioning in schizophrenia: A 2.5 year follow-up study. Schizophrenia Research, 44, 47–56.

    Article  CAS  PubMed  Google Scholar 

  • Alanen, Y. O. (1966). The family in the pathogenesis of schizophrenic and neurotic disorders. Acta Psychiatrica Scandinavica. Supplementum, 189, 1–654.

    Google Scholar 

  • Albrecht, A., & Stork, O. (2012). Are NCAM deficient mice an animal model for schizophrenia? Frontiers in Behavioral Neuroscience, 6, 43.

    Article  PubMed  PubMed Central  Google Scholar 

  • Alpert, M., Rosenberg, S. D., Pouget, E. R., & Shaw, R. J. (2000). Prosody and lexical accuracy in flat affect schizophrenia. Psychiatry Research, 97, 107–118.

    Article  CAS  PubMed  Google Scholar 

  • Amato, F. R. D., Scalera, E., Sarli, C., Moles, A., & D’Amato, F. R. (2005). Pups call, mothers rush: Does maternal responsiveness affect the amount of ultrasonic vocalizations in mouse pups? Behavior Genetics, 35, 103–112.

    Article  PubMed  Google Scholar 

  • American Psychiatric Association Publishing. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Arlington, VA: American Psychiatric Association Publishing.

    Google Scholar 

  • Amir, R. E., Van den Veyver, I. B., Wan, M., Tran, C. Q., Francke, U., & Zoghbi, H. Y. (1999). Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nature Genetics, 23, 185–188.

    Article  CAS  PubMed  Google Scholar 

  • Andari, E., Duhamel, J.-R., Zalla, T., Herbrecht, E., Leboyer, M., & Sirigu, A. (2010). Promoting social behavior with oxytocin in high-functioning autism spectrum disorders. Proceedings of the National Academy of Sciences of the United States of America, 107, 4389–4394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arriaga, G., Zhou, E. P., & Jarvis, E. D. (2012). Of mice, birds, and men: The mouse ultrasonic song system has some features similar to humans and song-learning birds. PLoS One, 7, e46610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bader, P., Faizi, M., & Kim, L. (2011). Mouse model of Timothy syndrome recapitulates triad of autistic traits. Proceedings of the National Academy of Sciences, 108, 15432–15437.

    Article  CAS  Google Scholar 

  • Bailey, A., Le Couteur, A., Gottesman, I., Bolton, P., Simonoff, E., Yuzda, E., et al. (1995). Autism as a strongly genetic disorder: Evidence from a British twin study. Psychological Medicine, 25, 63–77.

    Article  CAS  PubMed  Google Scholar 

  • Bailey, A., Palferman, S., Heavey, L., & Le Couteur, A. (1998). Autism: The phenotype in relatives. Journal of Autism and Developmental Disorders, 28, 369–392.

    Article  CAS  PubMed  Google Scholar 

  • Baron-Cohen, S., & Belmonte, M. K. (2005). Autism: A window onto the development of the social and the analytic brain. Annual Review of Neuroscience, 28, 109–126.

    Article  CAS  PubMed  Google Scholar 

  • Baron-Cohen, S., Leslie, A. M., & Frith, U. (1985). Does the autistic child have a “theory of mind”? Cognition, 21, 37–46.

    Article  CAS  PubMed  Google Scholar 

  • Bartak, L., Rutter, M., & Cox, A. (1975). A comparative study of infantile autism and specific developmental receptive language disorder: I. The children. The British Journal of Psychiatry, 126, 127–145.

    Article  CAS  PubMed  Google Scholar 

  • Bartz, J. A., Zaki, J., Bolger, N., Hollander, E., Ludwig, N. N., Kolevzon, A., et al. (2010). Oxytocin selectively improves empathic accuracy. Psychological Science, 21, 1426–1428.

    Article  PubMed  Google Scholar 

  • Baxter, A. J., Brugha, T. S., Erskine, H. E., Scheurer, R. W., Vos, T., & Scott, J. G. (2015). The epidemiology and global burden of autism spectrum disorders. Psychological Medicine, 45(3), 601–613.

    Article  CAS  PubMed  Google Scholar 

  • Belmonte, M. K., Allen, G., Beckel-Mitchener, A., Boulanger, L. M., Carper, R. A., & Webb, S. J. (2004). Autism and abnormal development of brain connectivity. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 24, 9228–9231.

    Article  CAS  Google Scholar 

  • Ben-Shachar, S., & Lanpher, B. (2009). Microdeletion 15q13. 3: A locus with incomplete penetrance for autism, mental retardation, and psychiatric disorders. Journal of Medical Genetics, 46, 382–388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergner, C., Smolinsky, A., Dufour, B., Laporte, J., Hart, P., Egan, R., et al. (2009). Phenotyping and genetics of rodent grooming and barbering: Utility for experimental neuroscience research. In A. V. Kalueff, J. L. LaPorte, & C. L. Bergner (Eds.), Neurobiology of grooming behavior (pp. 46–65). Cambridge: Cambridge University Press.

    Google Scholar 

  • Berkel, S., Marshall, C. R., Weiss, B., Howe, J., Roeth, R., Moog, U., et al. (2010). Mutations in the SHANK2 synaptic scaffolding gene in autism spectrum disorder and mental retardation. Nature Genetics, 42, 489–491.

    Article  CAS  PubMed  Google Scholar 

  • Betancur, C., & Coleman, M. (2013). Etiological heterogeneity in autism spectrum disorders: Role of rare variants. In J. D. Buxbaum & P. R. Hof (Eds.), The neuroscience of autism spectrum disorders. Chicago: Elsevier.

    Google Scholar 

  • Blumberg, M. S., & Alberts, J. R. (1990). Ultrasonic vocalizations by rat pups in the cold: An acoustic by-product of laryngeal braking? Behavioral Neuroscience, 104, 808–817.

    Article  CAS  PubMed  Google Scholar 

  • Blumberg, S. J., Bramlett, M. D., Kogan, M. D., Schieve, L. A, & Jones, J. R. (2013). Changes in prevalence of parent-reported autism spectrum disorder in school-aged U.S. children: 2007 to 2011–2012. National Health Statistics Reports, (65), 1–11.

    Google Scholar 

  • Blundell, J., Blaiss, C. A., Etherton, M. R., Espinosa, F., Tabuchi, K., Walz, C., et al. (2010). Neuroligin-1 deletion results in impaired spatial memory and increased repetitive behavior. The Journal of Neuroscience, 30, 2115–2129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolivar, V., Walters, S., & Phoenix, J. (2007). Assessing autism-like behavior in mice: Variations in social interactions among inbred strains. Behavioural Brain Research, 176, 21–26.

    Article  PubMed  Google Scholar 

  • Bolton, P., Macdonald, H., Pickles, A., Rios, P., Goode, S., Crowson, M., et al. (1994). A case-control family history study of autism. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 35, 877–900.

    Article  CAS  PubMed  Google Scholar 

  • Branchi, I., Santucci, D., Puopolo, M., & Alleva, E. (2004). Neonatal behaviors associated with ultrasonic vocalizations in mice (mus musculus): A slow-motion analysis. Developmental Psychobiology, 44, 37–44.

    Article  PubMed  Google Scholar 

  • Brüne, M. (2005). Emotion recognition, “theory of mind”, and social behavior in schizophrenia. Psychiatry Research, 133, 135–147.

    Article  PubMed  Google Scholar 

  • Burns, J. K. (2004). An evolutionary theory of schizophrenia: Cortical connectivity, metarepresentation, and the social brain. The Behavioral and Brain Sciences, 27, 831–855.

    PubMed  Google Scholar 

  • Burns, J. (2006). The social brain hypothesis of schizophrenia. Psychiatria Danubina, 18, 225–229.

    PubMed  Google Scholar 

  • Carrión, R. E., McLaughlin, D., Goldberg, T. E., Auther, A. M., Olsen, R. H., Olvet, D. M., et al. (2013). Prediction of functional outcome in individuals at clinical high risk for psychosis. JAMA Psychiatry, 70, 1133–1142.

    Article  PubMed  PubMed Central  Google Scholar 

  • Centers for Disease Control and Prevention. (2012). Prevalence of autism spectrum disorders—Autism and Developmental Disabilities Monitoring Network, 14 sites, United States, 2008. Morbidity and Mortality Weekly Report Surveillance Summaries, 61, 1–19.

    Google Scholar 

  • Chabout, J., Serreau, P., Ey, E., Bellier, L., Aubin, T., Bourgeron, T., et al. (2012). Adult male mice emit context-specific ultrasonic vocalizations that are modulated by prior isolation or group rearing environment. PLoS One, 7, e29401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, R. Z., Akbarian, S., Tudor, M., & Jaenisch, R. (2001). Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice. Nature Genetics, 27, 327–331.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Q., Panksepp, J. B., & Lahvis, G. P. (2009). Empathy is moderated by genetic background in mice. PLoS One, 4, e4387.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ching, M. S. L., Shen, Y., Tan, W.-H., Jeste, S. S., Morrow, E. M., Chen, X., et al. (2010). Deletions of NRXN1 (neurexin-1) predispose to a wide spectrum of developmental disorders. American Journal of Medical Genetics, 153B, 937–947.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Couture, S. M., Penn, D. L., Losh, M., Adolphs, R., Hurley, R., & Piven, J. (2010). Comparison of social cognitive functioning in schizophrenia and high functioning autism: More convergence than divergence. Psychological Medicine, 40, 569–579.

    Article  PubMed  Google Scholar 

  • Crawley, J. N. (2004). Designing mouse behavioral tasks relevant to autistic-like behaviors. Mental Retardation and Developmental Disabilities Research Reviews, 10, 248–258.

    Article  PubMed  Google Scholar 

  • Crespi, B., & Badcock, C. (2008). Psychosis and autism as diametrical disorders of the social brain. The Behavioral and Brain Sciences, 31, 241–261.

    PubMed  Google Scholar 

  • Crespi, B., Stead, P., & Elliot, M. (2010). Evolution in health and medicine Sackler colloquium: Comparative genomics of autism and schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 107, 1736–1741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daniels, J. L., Forssen, U., Hultman, C. M., Cnattingius, S., Savitz, D. A., Feychting, M., et al. (2008). Parental psychiatric disorders associated with autism spectrum disorders in the offspring. Pediatrics, 121, e1357–e1362.

    Article  PubMed  Google Scholar 

  • Dawson, G. (2008). Early behavioral intervention, brain plasticity, and the prevention of autism spectrum disorder. Development and Psychopathology, 20, 775–803.

    Article  PubMed  Google Scholar 

  • de Achával, D., Costanzo, E. Y., Villarreal, M., Jáuregui, I. O., Chiodi, A., Castro, M. N., et al. (2010). Emotion processing and theory of mind in schizophrenia patients and their unaffected first-degree relatives. Neuropsychologia, 48, 1209–1215.

    Article  PubMed  Google Scholar 

  • Deacon, R. M. J. (2006). Assessing nest building in mice. Nature Protocols, 1, 1117–1119.

    Article  PubMed  Google Scholar 

  • Defensor, E., & Pearson, B. (2011). A novel social proximity test suggests patterns of social avoidance and gaze aversion-like behavior in BTBR T+ tf/J mice. Behavioural Brain Research, 31, 1169–1182.

    Google Scholar 

  • Di Cristo, G. (2007). Development of cortical GABAergic circuits and its implications for neurodevelopmental disorders. Clinical Genetics, 72, 1–8.

    Article  PubMed  Google Scholar 

  • Dickinson, D., Bellack, A. S., & Gold, J. M. (2007). Social/communication skills, cognition, and vocational functioning in schizophrenia. Schizophrenia Bulletin, 33, 1213–1220.

    Article  PubMed  Google Scholar 

  • Docherty, N. M., Gordinier, S. W., Hall, M. J., & Cutting, L. P. (1999). Communication disturbances in relatives beyond the age of risk for schizophrenia and their associations with symptoms in patients. Schizophrenia Bulletin, 25, 851–862.

    Article  CAS  PubMed  Google Scholar 

  • Docherty, N. M., Hawkins, K. A., Hoffman, R. E., Quinlan, D. M., Rakfeldt, J., & Sledge, W. H. (1996). Working memory, attention, and communication disturbances in schizophrenia. Journal of Abnormal Psychology, 105, 212–219.

    Article  CAS  PubMed  Google Scholar 

  • Domes, G., Heinrichs, M., Gläscher, J., Büchel, C., Braus, D. F., & Herpertz, S. C. (2007). Oxytocin attenuates amygdala responses to emotional faces regardless of valence. Biological Psychiatry, 62, 1187–1190.

    Article  CAS  PubMed  Google Scholar 

  • Duncan, G., Moy, S., & Perez, A. (2004). Deficits in sensorimotor gating and tests of social behavior in a genetic model of reduced NMDA receptor function. Behavioural Brain Research, 153, 507–519.

    Article  CAS  PubMed  Google Scholar 

  • Eack, S. M., Mermon, D. E., Montrose, D. M., Miewald, J., Gur, R. E., Gur, R. C., et al. (2010). Social cognition deficits among individuals at familial high risk for schizophrenia. Schizophrenia Bulletin, 36, 1081–1088.

    Article  PubMed  Google Scholar 

  • Ehninger, D., Han, S., Shilyansky, C., & Zhou, Y. (2008). Reversal of learning deficits in a Tsc2+/− mouse model of tuberous sclerosis. Nature Medicine, 14, 843–848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Etherton, M. R., Blaiss, C. A., Powell, C. M., Etherton, M. R., Blaiss, C. A., Powell, C. M., et al. (2009). Mouse neurexin-1alpha deletion causes correlated electrophysiological and behavioral changes consistent with cognitive impairments. Proceedings of the National Academy of Sciences, 106, 17998–18003.

    Article  CAS  Google Scholar 

  • Faraone, S. V., Seidman, L. J., Kremen, W. S., Pepple, J. R., Lyons, M. J., & Tsuang, M. T. (1995). Neuropsychological functioning among the nonpsychotic relatives of schizophrenic patients: A diagnostic efficiency analysis. Journal of Abnormal Psychology, 104, 286–304.

    Article  CAS  PubMed  Google Scholar 

  • Fejgin, K., Nielsen, J., Birknow, M. R., Bastlund, J. F., Nielsen, V., Lauridsen, J. B., et al. (2014). A Mouse model that recapitulates cardinal features of the 15q13.3 microdeletion syndrome including schizophrenia- and epilepsy-related alterations. Biological Psychiatry, 76, 128–137.

    Article  CAS  PubMed  Google Scholar 

  • Ferguson, J. N., Aldag, J. M., Insel, T. R., & Young, L. J. (2001). Oxytocin in the medial amygdala is essential for social recognition in the mouse. The Journal of Neuroscience, 21, 8278–8285.

    CAS  PubMed  Google Scholar 

  • Folstein, S. E., & Rutter, M. L. (1977a). Infantile autism: A genetic study of 21 twin pairs. Journal of Child Psychology and Psychiatry, 18, 297–321.

    Article  CAS  PubMed  Google Scholar 

  • Folstein, S., & Rutter, M. (1977b). Genetic influences and infantile autism. Nature, 265, 726–728.

    Article  CAS  PubMed  Google Scholar 

  • Fone, K. C. F., & Porkess, M. V. (2008). Behavioural and neurochemical effects of post-weaning social isolation in rodents-relevance to developmental neuropsychiatric disorders. Neuroscience and Biobehavioral Reviews, 32, 1087–1102.

    Article  CAS  PubMed  Google Scholar 

  • Fox, W. (1965). Reflex-ontogeny and behavioural development of the mouse. Animal Behaviour, 13, 234–241.

    Article  CAS  PubMed  Google Scholar 

  • Fromer, M., Pocklington, A. J., Kavanagh, D. H., Williams, H. J., Dwyer, S., Gormley, P., et al. (2014). De novo mutations in schizophrenia implicate synaptic networks. Nature, 506, 179–184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gai, X., Xie, H. M., Perin, J. C., Takahashi, N., Murphy, K., Wenocur, A. S., et al. (2011). Rare structural variation of synapse and neurotransmission genes in autism. Molecular Psychiatry, 17, 402–411.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gauthier, J., Champagne, N., Lafrenière, R. G., Xiong, L., Spiegelman, D., & Brustein, E. (2010). De novo mutations in the gene encoding the synaptic scaffolding protein SHANK3 in patients ascertained for schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 107, 7863–7868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gauthier, J., Siddiqui, T. J., Huashan, P., Yokomaku, D., Hamdan, F. F., Champagne, N., et al. (2011). Truncating mutations in NRXN2 and NRXN1 in autism spectrum disorders and schizophrenia. Human Genetics, 130, 563–573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gauthier, J., Spiegelman, D., Piton, A., Lafrenière, R. G., Laurent, S., St-Onge, J., et al. (2009). Novel de novo SHANK3 mutation in autistic patients. American Journal of Medical Genetics, 150B, 421–424.

    Article  CAS  PubMed  Google Scholar 

  • Gernsbacher, M. A., Dawson, M., & Hill Goldsmith, H. (2005). Three reasons not to believe in an autism epidemic. Current Directions in Psychological Science, 14, 55–58.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gilman, S. R., Chang, J., Xu, B., Bawa, T. S., Gogos, J. A., Karayiorgou, M., et al. (2012). Diverse types of genetic variation converge on functional gene networks involved in schizophrenia. Nature Neuroscience, 15, 1723–1728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glickman, S. E., & Schiff, B. B. (1967). A biological theory of reinforcement. Psychological Review, 74, 81–109.

    Article  CAS  PubMed  Google Scholar 

  • Goorden, S. M. I., van Woerden, G. M., van der Weerd, L., Cheadle, J. P., & Elgersma, Y. (2007). Cognitive deficits in Tsc1+/− mice in the absence of cerebral lesions and seizures. Annals of Neurology, 62, 648–655.

    Article  PubMed  Google Scholar 

  • Gottesman, I. I., & McGue, M. (2015). Endophenotype. In R. L. Cautin & S. O. Lilienfeld (Eds.), Encyclopedia of clinical psychology. New York: Wiley-Blackwell.

    Google Scholar 

  • Gottesman, I. I., Ph, D., & Gould, T. D. (2003). The endophenotype concept in psychiatry: Etymology and strategic intentions. The American Journal of Psychiatry, 160, 636–645.

    Article  PubMed  Google Scholar 

  • Gottesman, I. I., & Shields, J. (1973). Genetic theorizing and schizophrenia. The British Journal of Psychiatry, 122, 15–30.

    Article  CAS  PubMed  Google Scholar 

  • Gould, T. D., & Gottesman, I. I. (2006). Psychiatric endophenotypes and the development of valid animal models. Genes, Brain, and Behavior, 5, 113–119.

    Article  CAS  PubMed  Google Scholar 

  • Gourbal, B. E. F., Barthelemy, M., Petit, G., & Gabrion, C. (2004). Spectrographic analysis of the ultrasonic vocalisations of adult male and female BALB/c mice. Die Naturwissenschaften, 91, 381–385.

    Article  CAS  PubMed  Google Scholar 

  • Goussé, V., Plumet, M. H., Chabane, N., Mouren-Siméoni, M.-C., Ferradian, N., & Leboyer, M. (2002). Fringe phenotypes in autism: A review of clinical, biochemical and cognitive studies. European Psychiatry, 17, 120–128.

    Article  PubMed  Google Scholar 

  • Gratten, J., Visscher, P. M., Mowry, B. J., & Wray, N. R. (2013). Interpreting the role of de novo protein-coding mutations in neuropsychiatric disease. Nature Genetics, 45, 234–238.

    Article  CAS  PubMed  Google Scholar 

  • Gregor, A., Albrecht, B., Bader, I., Bijlsma, E. K., Ekici, A. B., Engels, H., et al. (2011). Expanding the clinical spectrum associated with defects in CNTNAP2 and NRXN1. BMC Medical Genetics, 12, 106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grimsley, J. M. S., Monaghan, J. J. M., & Wenstrup, J. J. (2011). Development of social vocalizations in mice. PLoS One, 6, e17460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guastella, A. J., Einfeld, S. L., Gray, K. M., Rinehart, N. J., Tonge, B. J., Lambert, T. J., et al. (2010). Intranasal oxytocin improves emotion recognition for youth with autism spectrum disorders. Biological Psychiatry, 67, 692–694.

    Article  CAS  PubMed  Google Scholar 

  • Gur, R., Tendler, A., & Wagner, S. (2014). Long-term social recognition memory is mediated by oxytocin-dependent synaptic plasticity in the medial amygdala. Biological Psychiatry, 76, 377–386.

    Article  CAS  PubMed  Google Scholar 

  • Guy, J., Hendrich, B., Holmes, M., Martin, J. E., & Bird, A. (2001). A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nature Genetics, 27, 322–326.

    Article  CAS  PubMed  Google Scholar 

  • Häfner, H., Löffler, W., Maurer, K., Hambrecht, M., & van der Heiden, W. (1999). Depression, negative symptoms, social stagnation and social decline in the early course of schizophrenia. Acta Psychiatrica Scandinavica, 100, 105–118.

    Article  PubMed  Google Scholar 

  • Hahn, M. E., & Schanz, N. (2002). The effects of cold, rotation, and genotype on the production of ultrasonic calls in infant mice. Behavior Genetics, 32, 267–273.

    Article  PubMed  Google Scholar 

  • Heck, D. H., & Lu, L. (2012). The social life of neurons: Synaptic communication deficits as a common denominator of autism, schizophrenia, and other cognitive disorders. Biological Psychiatry, 72, 173–174.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hofer, M., Shair, H., & Brunelli, S. (2001). Ultrasonic vocalizations in rat and mouse pups. Current Protocols in Neuroscience, 8, 1–16.

    Google Scholar 

  • Holy, T. E., & Guo, Z. (2005). Ultrasonic songs of male mice. PLoS Biology, 3, e386.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Horev, G., Ellegood, J., Lerch, J. P., Son, Y. E., Muthuswamy, L., & Vogel, H. (2011). Dosage-dependent phenotypes in models of 16p11.2 lesions found in autism. PNAS, 108, 17076–17081.

    Article  PubMed  PubMed Central  Google Scholar 

  • Howerton, C. L., Garner, J. P., & Mench, J. a. (2012). A system utilizing radio frequency identification (RFID) technology to monitor individual rodent behavior in complex social settings. Journal of Neuroscience Methods, 209, 74–78.

    Article  PubMed  Google Scholar 

  • Huang, H., Michetti, C., Busnelli, M., Managò, F., Sannino, S., Scheggia, D., et al. (2013). Chronic and acute intranasal oxytocin produce divergent social effects in mice. Neuropsychopharmacology, 39(5), 1102–1114.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huguet, G., Ey, E., & Bourgeron, T. (2013). The genetic landscapes of autism spectrum disorders. Annual Review of Genomics and Human Genetics, 14, 191–213.

    Article  CAS  PubMed  Google Scholar 

  • Hurlemann, R., Patin, A., Onur, O. A., Cohen, M. X., Baumgartner, T., Metzler, S., et al. (2010). Oxytocin enhances amygdala-dependent, socially reinforced learning and emotional empathy in humans. The Journal of Neuroscience, 30, 4999–5007.

    Article  CAS  PubMed  Google Scholar 

  • Insel, T. R. (2003). Is social attachment an addictive disorder? Physiology & Behavior, 79, 351–357.

    Article  CAS  Google Scholar 

  • International Schizophrenia Consortium. (2008). Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature, 455, 237–241.

    Article  CAS  Google Scholar 

  • Irani, F., Platek, S. M., Panyavin, I. S., Calkins, M. E., Kohler, C., Siegel, S. J., et al. (2006). Self-face recognition and theory of mind in patients with schizophrenia and first-degree relatives. Schizophrenia Research, 88, 151–160.

    Article  PubMed  Google Scholar 

  • Irie, F., Badie-Mahdavi, H., & Yamaguchi, Y. (2012). Autism-like socio-communicative deficits and stereotypies in mice lacking heparan sulfate. Proceedings of the National Academy of Sciences of the United States of America, 2012, 5052–5056.

    Article  Google Scholar 

  • Jamain, S., Quach, H., Betancur, C., Råstam, M., Colineaux, C., Gillberg, I. C., et al. (2003). Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nature Genetics, 34, 27–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jamain, S., Radyushkin, K., Hammerschmidt, K., Granon, S., Boretius, S., Varoqueaux, F., et al. (2008). Reduced social interaction and ultrasonic communication in a mouse model of monogenic heritable autism. Proceedings of the National Academy of Sciences of the United States of America, 105, 1710–1715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeon, D., Kim, S., Chetana, M., Jo, D., Ruley, H. E., Lin, S.-Y., et al. (2010). Observational fear learning involves affective pain system and Cav1.2 Ca2+ channels in ACC. Nature Neuroscience, 13, 482–488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang, Y.-H., Pan, Y., Zhu, L., Landa, L., Yoo, J., Spencer, C., et al. (2010). Altered ultrasonic vocalization and impaired learning and memory in Angelman syndrome mouse model with a large maternal deletion from Ube3a to Gabrb3. PLoS One, 5, e12278.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Johnson, C. P. (2008). Recognition of autism before age 2 years. Pediatrics in Review/American Academy of Pediatrics, 29, 86–96.

    Article  PubMed  Google Scholar 

  • Jones, W., & Klin, A. (2013). Attention to eyes is present but in decline in 2–6-month-old infants later diagnosed with autism. Nature, 504, 427–431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones, C. A., Watson, D. J. G., & Fone, K. C. F. (2011). Animal models of schizophrenia. British Journal of Pharmacology, 164, 1162–1194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalueff, A. V., Minasyan, A., Keisala, T., Shah, Z. H., & Tuohimaa, P. (2006). Hair barbering in mice: Implications for neurobehavioural research. Behavioural Processes, 71, 8–15.

    Article  CAS  PubMed  Google Scholar 

  • Kanner, L. (1943). Autistic disturbances of affective contact. Nervous Child, 2, 217–250.

    Google Scholar 

  • Kendler, K. S. (1985). Diagnostic approaches to schizotypal personality disorder: A historical perspective. Schizophrenia Bulletin, 11, 538–553.

    Article  CAS  PubMed  Google Scholar 

  • Kety, S. S., Rosenthal, D., Wender, P. H., Schulsinger, F., & Jacobsen, B. (1976). Mental illness in the biological and adoptive families of adopted individuals who have become schizophrenic. Behavior Genetics, 6, 219–225.

    Article  CAS  PubMed  Google Scholar 

  • Kety, S. S., Rosenthal, D., Wender, P. H., & Schulsinger, F. (1968). The types and prevalence of mental illness in the biological and adoptive families of adopted schizophrenics. Journal of Psychiatric Research, 6, 345–362.

    Article  Google Scholar 

  • Kielinen, M., Rantala, H., Timonen, E., Linna, S.-L., & Moilanen, I. (2004). Associated medical disorders and disabilities in children with autistic disorder: A population-based study. Autism, 8, 49–60.

    Article  PubMed  Google Scholar 

  • Kim, H. G., Kishikawa, S., Higgins, A. W., Seong, I. S., Donovan, D. J., Shen, Y., et al. (2008). Disruption of neurexin 1 associated with autism spectrum disorder. American Journal of Human Genetics, 82, 199–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • King, B. H., & Lord, C. (2011). Is schizophrenia on the autism spectrum? Brain Research, 1380, 34–41.

    Article  CAS  PubMed  Google Scholar 

  • Kirov, G., Rujescu, D., Ingason, A., Collier, D. A., O’Donovan, M. C., & Owen, M. J. (2009). Neurexin 1 (NRXN1) deletions in schizophrenia. Schizophrenia Bulletin, 35, 851–854.

    Article  PubMed  PubMed Central  Google Scholar 

  • Klei, L., Sanders, S. J., Murtha, M. T., Hus, V., Lowe, J. K., Willsey, A. J., et al. (2012). Common genetic variants, acting additively, are a major source of risk for autism. Molecular Autism, 3, 9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Knutson, B., Burgdorf, J., & Panksepp, J. (2002). Ultrasonic vocalizations as indices of affective states in rats. Psychological Bulletin, 128, 961–977.

    Article  PubMed  Google Scholar 

  • Koh, H.-Y., Kim, D., Lee, J., Lee, S., & Shin, H.-S. (2008). Deficits in social behavior and sensorimotor gating in mice lacking phospholipase Cbeta1. Genes, Brain, and Behavior, 7, 120–128.

    PubMed  Google Scholar 

  • Ku, C. S., Loy, E. Y., Salim, A., Pawitan, Y., & Chia, K. S. (2010). The discovery of human genetic variations and their use as disease markers: Past, present and future. Journal of Human Genetics, 55, 403–415.

    Article  PubMed  Google Scholar 

  • Lahvis, G., Alleva, E., & Scattoni, M. (2011). Translating mouse vocalizations: Prosody and frequency modulation. Genes, Brain, and Behavior, 10, 4–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langdon, R., Coltheart, M., Ward, P. B., & Catts, S. V. (2002). Disturbed communication in schizophrenia: The role of poor pragmatics and poor mind-reading. Psychological Medicine, 32, 1273–1284.

    Article  CAS  PubMed  Google Scholar 

  • Larsson, H. J., Eaton, W. W., Madsen, K. M., Vestergaard, M., Olesen, A. V., Agerbo, E., et al. (2005). Risk factors for autism: Perinatal factors, parental psychiatric history, and socioeconomic status. American Journal of Epidemiology, 161, 916–925.

    Article  PubMed  Google Scholar 

  • Le Couteur, A., Bailey, A., Goode, S., Pickles, A., Gottesman, I., Robertson, S., et al. (1996). A broader phenotype of autism: The clinical spectrum in twins. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 37, 785–801.

    Article  PubMed  Google Scholar 

  • Leboyer, M., Bellivier, F., Nosten-Bertrand, M., Jouvent, R., Pauls, D., & Mallet, J. (1998). Psychiatric genetics: Search for phenotypes. Trends in Neurosciences, 21, 102–105.

    Article  CAS  PubMed  Google Scholar 

  • Lee, S. H., DeCandia, T. R., Ripke, S., Yang, J., Sullivan, P. F., Goddard, M. E., et al. (2012). Estimating the proportion of variation in susceptibility to schizophrenia captured by common SNPs. Nature Genetics, 44, 247–250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leentjens, A. F., Wielaert, S. M., van Harskamp, F., & Wilmink, F. W. (1998). Disturbances of affective prosody in patients with schizophrenia: A cross sectional study. Journal of Neurology, Neurosurgery, and Psychiatry, 64, 375–378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, H. H., Roy, M., Kuscuoglu, U., Spencer, C. M., Halm, B., Harrison, K. C., et al. (2009). Induced chromosome deletions cause hypersociability and other features of Williams-Beuren syndrome in mice. EMBO Molecular Medicine, 1, 50–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lijam, N., Paylor, R., McDonald, M. P., Crawley, J. N., Deng, C. X., Herrup, K., et al. (1997). Social interaction and sensorimotor gating abnormalities in mice lacking Dvl1. Cell, 90, 895–905.

    Article  CAS  PubMed  Google Scholar 

  • Liu, R. C., Linden, J. F., & Schreiner, C. E. (2006). Improved cortical entrainment to infant communication calls in mothers compared with virgin mice. The European Journal of Neuroscience, 23, 3087–3097.

    Article  PubMed  Google Scholar 

  • Liu, R. C., Miller, K. D., Merzenich, M. M., & Schreiner, C. E. (2003). Acoustic variability and distinguishability among mouse ultrasound vocalizations. The Journal of the Acoustical Society of America, 114, 3412.

    Article  PubMed  Google Scholar 

  • Lohmueller, K. E., Pearce, C. L., Pike, M., Lander, E. S., & Hirschhorn, J. N. (2003). Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nature Genetics, 33, 177–182.

    Article  CAS  PubMed  Google Scholar 

  • Long, J. M., Laporte, P., Paylor, R., & Wynshaw-Boris, A. (2004). Expanded characterization of the social interaction abnormalities in mice lacking Dvl1. Genes, Brain and Behavior, 3(1), 51–62.

    Article  CAS  Google Scholar 

  • Losh, M., Adolphs, R., Poe, M. D., Couture, S., Penn, D., Baranek, G. T., et al. (2009). Neuropsychological profile of autism and the broad autism phenotype. Archives of General Psychiatry, 66, 518–526.

    Article  PubMed  PubMed Central  Google Scholar 

  • Loveland, K. A., Tunali-Kotoski, B., Chen, Y. R., Ortegon, J., Pearson, D. A., Brelsford, K. A., et al. (1997). Emotion recognition in autism: Verbal and nonverbal information. Development and Psychopathology, 9, 579–593.

    Article  CAS  PubMed  Google Scholar 

  • Mahrt, E. J., Perkel, D. J., Tong, L., Rubel, E. W., & Portfors, C. V. (2013). Engineered deafness reveals that mouse courtship vocalizations do not require auditory experience. The Journal of Neuroscience, 33, 5573–5583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandell, D., & Lecavalier, L. (2014). Should we believe the centers for disease control and prevention’s autism spectrum disorder prevalence estimates? Autism, 18, 482–484.

    Article  PubMed  Google Scholar 

  • Manolio, T. A., Collins, F. S., Cox, N. J., Goldstein, D. B., Hindorff, L. A., Hunter, D. J., et al. (2009). Finding the missing heritability of complex diseases. Nature, 461, 747–753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marín, O. (2012). Interneuron dysfunction in psychiatric disorders. Nature Reviews. Neuroscience, 13, 107–120.

    PubMed  Google Scholar 

  • Marshall, C. R., Noor, A., Vincent, J. B., Lionel, A. C., Feuk, L., Skaug, J., et al. (2008). Structural variation of chromosomes in autism spectrum disorder. Journal of Human Genetics, 82(2), 477–488.

    Article  CAS  Google Scholar 

  • McCann, J., & Peppé, S. (2003). Prosody in autism spectrum disorders: A critical review. International Journal of Language & Communication Disorders/Royal College of Speech & Language Therapists, 38, 325–350.

    Article  Google Scholar 

  • McFarlane, H. G., Kusek, G. K., Yang, M., Phoenix, J. L., Bolivar, V. J., & Crawley, J. N. (2008). Autism-like behavioral phenotypes in BTBR T+tf/J mice. Genes, Brain, and Behavior, 7, 152–163.

    Article  CAS  PubMed  Google Scholar 

  • McIntosh, D. N., Reichmann-Decker, A., Winkielman, P., & Wilbarger, J. L. (2006). When the social mirror breaks: Deficits in automatic, but not voluntary, mimicry of emotional facial expressions in autism. Developmental Science, 9, 295–302.

    Article  PubMed  Google Scholar 

  • Merikangas, A. K., Corvin, A. P., & Gallagher, L. (2009). Copy-number variants in neurodevelopmental disorders: Promises and challenges. Trends in Genetics, 25, 536–544.

    Article  CAS  PubMed  Google Scholar 

  • Miller, G. A., & Rockstroh, B. (2013). Endophenotypes in psychopathology research: Where do we stand? Annual Review of Clinical Psychology, 9, 177–213.

    Article  PubMed  Google Scholar 

  • Mills, A. A., & Bradley, A. (2001). From mouse to man: Generating megabase chromosome rearrangements. Trends in Genetics, 17, 331–339.

    Article  CAS  PubMed  Google Scholar 

  • Mineur, Y., Huynh, L., & Crusio, W. (2006). Social behavior deficits in the Fmr 1 mutant mouse. Behavioural Brain Research, 168(1), 172e5. doi:10.1016/j.bbr.2005.11.004.

    Article  CAS  Google Scholar 

  • Molina, J., Carmona-Mora, P., Chrast, J., Krall, P. M., Canales, C. P., Lupski, J. R., et al. (2008). Abnormal social behaviors and altered gene expression rates in a mouse model for Potocki-Lupski syndrome. Human Molecular Genetics, 17, 2486–2495.

    Article  CAS  PubMed  Google Scholar 

  • Moretti, P., Bouwknecht, J. A., Teague, R., Paylor, R., & Zoghbi, H. Y. (2005). Abnormalities of social interactions and home-cage behavior in a mouse model of Rett syndrome. Human Molecular Genetics, 14, 205–220.

    Article  CAS  PubMed  Google Scholar 

  • Moy, S. S., Nadler, J. J., Young, N. B., Nonneman, R. J., Grossman, A. W., Murphy, D. L., et al. (2009). Social approach in genetically engineered mouse lines relevant to autism. Genes, Brain, and Behavior, 8, 129–142.

    Article  CAS  PubMed  Google Scholar 

  • Nadig, A. S., Ozonoff, S., Young, G. S., Rozga, A., Sigman, M., & Rogers, S. J. (2007). A prospective study of response to name in infants at risk for autism. Archives of Pediatrics & Adolescent Medicine, 161, 378–383.

    Article  Google Scholar 

  • Nadler, J. J., Moy, S. S., Dold, G., Trang, D., Simmons, N., Perez, A., et al. (2004). Automated apparatus for quantitation of social approach behaviors in mice. Genes, Brain, and Behavior, 3, 303–314.

    Article  CAS  PubMed  Google Scholar 

  • Nakatani, J., Tamada, K., Hatanaka, F., Ise, S., Ohta, H., Inoue, K., et al. (2009). Abnormal behavior in a chromosome-engineered mouse model for human 15q11-13 duplication seen in autism. Cell, 137, 1235–1246.

    Article  PubMed  PubMed Central  Google Scholar 

  • Neale, B. M., Kou, Y., Liu, L., Ma’ayan, A., Samocha, K. E., Sabo, A., et al. (2012). Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature, 485(7397), 242–245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neunuebel, J. P., Taylor, A. L., Arthur, B. J., & Egnor, S. R. (2015). Female mice ultrasonically interact with males during courtship displays. Elife, 4, 1–24.

    Article  Google Scholar 

  • Newman, J. (2007). Neural circuits underlying crying and cry responding in mammals. Behavioural Brain Research, 182, 155–165.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nieman, D. H., Velthorst, E., Becker, H. E., de Haan, L., Dingemans, P. M., Linszen, D. H., et al. (2013). The Strauss and Carpenter Prognostic Scale in subjects clinically at high risk of psychosis. Acta Psychiatrica Scandinavica, 127, 53–61.

    Article  CAS  PubMed  Google Scholar 

  • Noirot, E., National, C., & Recherche, D. (1972). Ultrasounds and maternal behavior in small rodents. Developmental Psychobiology, 5, 371–387.

    Article  CAS  PubMed  Google Scholar 

  • O’Roak, B. J., Vives, L., Girirajan, S., Karakoc, E., Krumm, N., Coe, B. P., et al. (2012). Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature, 485(7397), 246–250.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oberman, L. M., Winkielman, P., & Ramachandran, V. S. (2009). Slow echo: Facial EMG evidence for the delay of spontaneous, but not voluntary, emotional mimicry in children with autism spectrum disorders. Developmental Science, 12, 510–520.

    Article  PubMed  Google Scholar 

  • Oerlemans, A. M., Droste, K., van Steijn, D. J., de Sonneville, L. M. J., Buitelaar, J. K., & Rommelse, N. N. J. (2013). Co-segregation of social cognition, executive function and local processing style in children with ASD, their siblings and normal controls. Journal of Autism and Developmental Disorders, 43, 2764–2778.

    Article  PubMed  Google Scholar 

  • Oerlemans, A. M., van der Meer, J. M. J., van Steijn, D. J., de Ruiter, S. W., de Bruijn, Y. G. E., de Sonneville, L. M. J., et al. (2014). Recognition of facial emotion and affective prosody in children with ASD (+ADHD) and their unaffected siblings. European Child & Adolescent Psychiatry, 23, 257–271.

    Article  Google Scholar 

  • Ogier, M., Wang, H., Hong, E., Wang, Q., Greenberg, M. E., & Katz, D. M. (2007). Brain-derived neurotrophic factor expression and respiratory function improve after ampakine treatment in a mouse model of Rett syndrome. The Journal of Neuroscience, 27, 10912–10917.

    Article  CAS  PubMed  Google Scholar 

  • Osterling, J. A., Dawson, G., & Munson, J. A. (2002). Early recognition of 1-year-old infants with autism spectrum disorder versus mental retardation. Development and Psychopathology, 14, 239–251.

    Article  PubMed  Google Scholar 

  • Panksepp, J. B. J. (2013). Toward a cross-species understanding of empathy. Trends in Neurosciences, 36, 489–496.

    Article  CAS  PubMed  Google Scholar 

  • Panksepp, J. B., Jochman, K. A., Kim, J. U., Koy, J. J., Wilson, E. D., Chen, Q., et al. (2007). Affiliative behavior, ultrasonic communication and social reward are influenced by genetic variation in adolescent mice. PLoS One, 2, e351.

    Article  PubMed  PubMed Central  Google Scholar 

  • Panksepp, J. B., & Lahvis, G. P. (2007). Social reward among juvenile mice. Genes, Brain, and Behavior, 6, 661–671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parikshak, N. N. N., Luo, R., Zhang, A., Won, H., Lowe, J. K. K., Chandran, V., et al. (2013). Integrative functional genomic analyses implicate specific molecular pathways and circuits in autism. Cell, 155, 1008–1021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peça, J., Feliciano, C., Ting, J. T., Wang, W., Wells, M. F., Venkatraman, T. N., et al. (2011). Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature, 472, 437–442.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pedersen, C. A., Gibson, C. M., Rau, S. W., Salimi, K., Smedley, K. L., Casey, R. L., et al. (2011). Intranasal oxytocin reduces psychotic symptoms and improves Theory of Mind and social perception in schizophrenia. Schizophrenia Research, 132, 50–53.

    Article  PubMed  Google Scholar 

  • Pedersen, C. B., Mors, O., Bertelsen, A., Waltoft, B. L., Agerbo, E., McGrath, J. J., et al. (2014). A comprehensive nationwide study of the incidence rate and lifetime risk for treated mental disorders. JAMA Psychiatry, 71, 573–581.

    Article  PubMed  Google Scholar 

  • Peñagarikano, O., Abrahams, B. S., Herman, E. I., Winden, K. D., Gdalyahu, A., Dong, H., et al. (2011). Absence of CNTNAP2 leads to epilepsy, neuronal migration abnormalities, and core autism-related deficits. Cell, 147, 235–246.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Persico, A. M., & Sacco, R. (2014). Endophenotypes in Autism Spectrum Disorders. In V. B. Patel, V. R. Preedy, & C. R. Martin (Eds.), Comprehensive guide to autism (pp. 77–95). New York, NY: Springer.

    Chapter  Google Scholar 

  • Picker, J. D., Yang, R., Ricceri, L., & Berger-Sweeney, J. (2006). An altered neonatal behavioral phenotype in Mecp2 mutant mice. Neuroreport, 17, 541–544.

    Article  PubMed  Google Scholar 

  • Pickles, A., Starr, E., Kazak, S., Bolton, P., Papanikolaou, K., Bailey, A., et al. (2000). Variable expression of the autism broader phenotype: Findings from extended pedigrees. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 41, 491–502.

    Article  CAS  PubMed  Google Scholar 

  • Pinkham, A., Hopfinger, J., & Pelphrey, K. (2008). Neural bases for impaired social cognition in schizophrenia and autism spectrum disorders. Schizophrenia Research, 99, 164–175.

    Article  PubMed  Google Scholar 

  • Pinto, D., Delaby, E., Merico, D., Barbosa, M., Merikangas, A., Klei, L., et al. (2014). Convergence of genes and cellular pathways dysregulated in autism spectrum disorders. American Journal of Human Genetics, 94, 677–694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinto, D., Pagnamenta, A. T., Klei, L., Anney, R., Merico, D., Regan, R., et al. (2010). Functional impact of global rare copy number variation in autism spectrum disorders. Nature, 466, 368–372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piven, J., Palmer, P., Landa, R., Santangelo, S., Jacobi, D., & Childress, D. (1997). Personality and language characteristics in parents from multiple-incidence autism families. American Journal of Medical Genetics, 74, 398–411.

    Article  CAS  PubMed  Google Scholar 

  • Portfors, C. V. (2007). Types and functions of ultrasonic vocalizations in laboratory rats and mice. Journal of the American Association for Laboratory Animal Science: JAALAS, 46, 28–34.

    CAS  PubMed  Google Scholar 

  • Provenzano, G., Zunino, G., Genovesi, S., Sgadó, P., & Bozzi, Y. (2012). Mutant mouse models of autism spectrum disorders. Disease Markers, 33, 225–239.

    Article  PubMed  PubMed Central  Google Scholar 

  • Purcell, S. M., Moran, J. L., Fromer, M., Ruderfer, D., Solovieff, N., Roussos, P., et al. (2014). A polygenic burden of rare disruptive mutations in schizophrenia. Nature, 506(7487), 185–190. doi:10.1038/nature12975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Purcell, S. M., Wray, N. R., Stone, J. L., Visscher, P. M., O’Donovan, M. C., Sullivan, P. F., et al. (2009). Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature, 460, 748–752.

    CAS  PubMed  Google Scholar 

  • Ramirez-Solis, R., Liu, P., & Bradley, A. (1995). Chromosome engineering in mice. Nature, 378(6558), 720–724.

    Article  CAS  PubMed  Google Scholar 

  • Reser, J. E. (2014). Solitary mammals provide an animal model for autism spectrum disorders. Journal of Comparative Psychology, 128(1), 99–113. doi:10.1037/a0034519.

    Article  PubMed  Google Scholar 

  • Ritsner, M. S., & Gottesman, I. I. (2009). Where do we stand in the quest for neuropsychiatric biomarkers and endophenotypes and what next? In M. S. Ritsner (Ed.), The handbook of neuropsychiatric biomarkers, endophenotypes, and genes (pp. 3–21). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Sanders, S. J., Murtha, M. T., Gupta, A. R., Murdoch, J. D., Raubeson, M. J., Willsey, A. J., et al. (2012). De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature, 485, 1–6.

    Article  CAS  Google Scholar 

  • Sandin, S., Lichtenstein, P., Kuja-Halkola, R., Larsson, H., Hultman, C. M., & Reichenberg, A. (2014). The familial risk of autism. JAMA, 311, 1770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santos, M., Silva-Fernandes, A., Oliveira, P., Sousa, N., & Maciel, P. (2007). Evidence for abnormal early development in a mouse model of Rett syndrome. Genes, Brain, and Behavior, 6, 277–286.

    Article  CAS  PubMed  Google Scholar 

  • Sarna, J., Dyck, R., & Whishaw, I. (2000). The Dalila effect: C57BL6 mice barber whiskers by plucking. Behavioural Brain Research, 108, 39–45.

    Article  CAS  PubMed  Google Scholar 

  • Sato, A., Kasai, S., Kobayashi, T., Takamatsu, Y., Hino, O., Ikeda, K., et al. (2012a). Rapamycin reverses impaired social interaction in mouse models of tuberous sclerosis complex. Nature Communications, 3, 1292.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sato, D., Lionel, A. C., Leblond, C. S., Prasad, A., Pinto, D., Walker, S., et al. (2012b). SHANK1 deletions in males with autism spectrum disorder. American Journal of Human Genetics, 90, 879–887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scattoni, M. L. M., Crawley, J., & Ricceri, L. (2009). Ultrasonic vocalizations: A tool for behavioural phenotyping of mouse models of neurodevelopmental disorders. Neuroscience and Biobehavioral Reviews, 33, 508–515.

    Article  PubMed  Google Scholar 

  • Scattoni, M., McFarlane, H., Zhodzishsky, V., Caldwell, H. K., Young, W. S., Ricceri, L., et al. (2008). Reduced ultrasonic vocalizations in vasopressin 1b knockout mice. Behavioural Brain Research, 187, 371–378.

    Article  CAS  PubMed  Google Scholar 

  • Scearce-Levie, K., Roberson, E. D., Gerstein, H., Cholfin, J. A., Mandiyan, V. S., Shah, N. M., et al. (2008). Abnormal social behaviors in mice lacking Fgf17. Genes, Brain, and Behavior, 7, 344–354.

    Article  CAS  PubMed  Google Scholar 

  • Sebat, J., Lakshmi, B., Malhotra, D., Troge, J., Lese-martin, C., Walsh, T., et al. (2007). Strong association of de novo copy number mutations with autism. Science, 316, 18–22.

    Article  CAS  Google Scholar 

  • Seeman, T. E. (1996). Social ties and health: The benefits of social integration. Annals of Epidemiology, 6, 442–451.

    Article  CAS  PubMed  Google Scholar 

  • Šestan, N., State, M., & Sestan, N. (2013). The emerging biology of autism spectrum disorders. Science, 337, 1301–1303.

    Google Scholar 

  • Shahbazian, M., Young, J., Yuva-Paylor, L., Spencer, C., Antalffy, B., Noebels, J., et al. (2002). Mice with truncated MeCP2 recapitulate many Rett syndrome features and display hyperacetylation of histone H3. Neuron, 35, 243–254.

    Article  CAS  PubMed  Google Scholar 

  • Shinawi, M., Schaaf, C. P., Bhatt, S. S., Xia, Z., Patel, A., Cheung, S. W., et al. (2009). A small recurrent deletion within 15q13.3 is associated with a range of neurodevelopmental phenotypes. Nature Genetics, 41, 1269–1271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shriberg, L. D., Paul, R., McSweeny, J. L., Klin, A. M., Cohen, D. J., & Volkmar, F. R. (2001). Speech and prosody characteristics of adolescents and adults with high-functioning autism and Asperger syndrome. Journal of Speech, Language, and Hearing Research: JSLHR, 44, 1097–1115.

    Article  CAS  PubMed  Google Scholar 

  • Shu, W., Cho, J. Y., Jiang, Y., Zhang, M., Weisz, D., Elder, G. A., et al. (2005). Altered ultrasonic vocalization in mice with a disruption in the Foxp2 gene. Proceedings of the National Academy of Sciences of the United States of America, 102, 9643–9648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silverman, J. L., Tolu, S. S., Barkan, C. L., & Crawley, J. N. (2010a). Repetitive self-grooming behavior in the BTBR mouse model of autism is blocked by the mGluR5 antagonist MPEP. Neuropsychopharmacology, 35, 976–989.

    Article  CAS  PubMed  Google Scholar 

  • Silverman, J., Yang, M., Lord, C., & Crawley, J. N. (2010b). Behavioural phenotyping assays for mouse models of autism. Nature Reviews Neuroscience, 11, 490–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simmons, J. M., & Quinn, K. J. (2014). The NIMH Research Domain Criteria (RDoC) Project: Implications for genetics research. Mammalian Genome, 25, 23–31.

    Article  CAS  PubMed  Google Scholar 

  • Singh, S. K., & Eroglu, C. (2013). Neuroligins provide molecular links between syndromic and nonsyndromic autism. Science Signaling, 6, re4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Spencer, C. M., Graham, D. F., Yuva-Paylor, L. A., Nelson, D. L., & Paylor, R. (2008). Social behavior in Fmr1 knockout mice carrying a human FMR1 transgene. Behavioral Neuroscience, 122, 710–715.

    Article  CAS  PubMed  Google Scholar 

  • Spinka, M., Newberry, R., & Bekoff, M. (2001). Mammalian play: Training for the unexpected. Quarterly Review of Biology, 76, 141–168.

    Article  CAS  PubMed  Google Scholar 

  • Stanley, D. A., & Adolphs, R. (2013). Toward a neural basis for social behavior. Neuron, 80, 816–826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stark, K. L., Xu, B., Bagchi, A., Lai, W.-S., Liu, H., Hsu, R., et al. (2008). Altered brain microRNA biogenesis contributes to phenotypic deficits in a 22q11-deletion mouse model. Nature Genetics, 40, 751–760.

    Article  CAS  PubMed  Google Scholar 

  • Stefansson, H., Ophoff, R. A., Steinberg, S., Andreassen, O. A., Cichon, S., Rujescu, D., et al. (2009). Common variants conferring risk of schizophrenia. Nature, 460, 744–747.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stefansson, H., Rujescu, D., Cichon, S., Pietiläinen, O. P. H., Ingason, A., Steinberg, S., et al. (2008). Large recurrent microdeletions associated with schizophrenia. Nature, 455, 232–236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strauss, J. S., & Carpenter, W. T. (1974). The Prediction of Outcome in schizophrenia. II. Relationships between predictor and outcome variables. JAMA, 31, 37–42.

    CAS  Google Scholar 

  • Sucksmith, E., Allison, C., Baron-Cohen, S., Chakrabarti, B., & Hoekstra, R. a. (2013). Empathy and emotion recognition in people with autism, first-degree relatives, and controls. Neuropsychologia, 51, 98–105.

    Article  CAS  PubMed  Google Scholar 

  • Sullivan, P. F., Daly, M. J., & O’Donovan, M. (2012a). Genetic architectures of psychiatric disorders: The emerging picture and its implications. Nature Reviews. Genetics, 13, 537–551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sullivan, P. F., Magnusson, C., Reichenberg, A., Boman, M., Dalman, C., Davidson, M., et al. (2012b). Family history of schizophrenia and bipolar disorder as risk factors for autism. Archives of General Psychiatry, 69, 1099–1103.

    Article  PubMed  PubMed Central  Google Scholar 

  • Szatmari, P., Paterson, A. D., Zwaigenbaum, L., Roberts, W., Brian, J., Liu, X.-Q., et al. (2007). Mapping autism risk loci using genetic linkage and chromosomal rearrangements. Nature Genetics, 39, 319–328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tarbox, S., & Pogue-Geile, M. (2011). A multivariate perspective on schizotypy and familial association with schizophrenia: A review. Clinical Psychology Review, 31, 1169–1182.

    Article  PubMed  PubMed Central  Google Scholar 

  • Thurmond, J. B. (1975). Technique for producing and measuring territorial aggression using laboratory mice. Physiology & Behavior, 14, 879–881.

    Article  CAS  Google Scholar 

  • Tseng, K., Chambers, R., & Lipska, B. (2009). The neonatal ventral hippocampal lesion as a heuristic neurodevelopmental model of schizophrenia. Behavioural Brain Research, 204, 295–305.

    Article  PubMed  Google Scholar 

  • Wang, X., McCoy, P. A., Rodriguiz, R. M., Pan, Y., Je, H. S., Roberts, A. C., et al. (2011). Synaptic dysfunction and abnormal behaviors in mice lacking major isoforms of Shank3. Human Molecular Genetics, 20, 3093–3108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe, T., Abe, O., Kuwabara, H., Yahata, N., Takano, Y., Iwashiro, N., et al. (2014). Mitigation of sociocommunicational deficits of autism through oxytocin-induced recovery of medial prefrontal activity. JAMA Psychiatry, 71(2), 166–175. doi:10.1001/jamapsychiatry.2013.3181.

    Article  PubMed  Google Scholar 

  • White, T., & Gottesman, I. (2012). Brain connectivity and gyrification as endophenotypes for schizophrenia: Weight of the evidence. Current Topics in Medicinal Chemistry, 12, 2393–2403.

    Article  CAS  PubMed  Google Scholar 

  • Winslow, J. T. (2009). Mood and anxiety related phenotypes in mice. Neuromethods, 42, 67–84.

    Article  Google Scholar 

  • Wöhr, M., & Schwarting, R. K. W. (2010). Rodent ultrasonic communication and its relevance for models of neuropsychiatric disorders. e-Neuroforum, 1, 71–80.

    Article  Google Scholar 

  • Yan, Q. J., Rammal, M., Tranfaglia, M., & Bauchwitz, R. P. (2005). Suppression of two major Fragile X Syndrome mouse model phenotypes by the mGluR5 antagonist MPEP. Neuropharmacology, 49, 1053–1066.

    Article  CAS  PubMed  Google Scholar 

  • Yang, M., Bozdagi, O., Scattoni, M. L., Wöhr, M., Roullet, F. I., Katz, A. M., et al. (2012). Reduced excitatory neurotransmission and mild autism-relevant phenotypes in adolescent Shank3 null mutant mice. The Journal of Neuroscience, 32, 6525–6541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, M., & Crawley, J. (2009). Simple behavioral assessment of mouse olfaction. Current Protocols in Neuroscience, 8, 1–14.

    CAS  Google Scholar 

  • Yang, M., Scattoni, M. L., Zhodzishsky, V., Chen, T., Caldwell, H., Young, W. S., et al. (2007). Social approach behaviors are similar on conventional versus reverse lighting cycles, and in replications across cohorts, in BTBR T + tf/J, C57BL/6J, and vasopressin receptor 1B mutant mice. Frontiers in Behavioral Neuroscience, 1, 1–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Young, P. (1959). The role of affective processes in learning and motivation. Psychological Review, 66, 104–125.

    Article  CAS  PubMed  Google Scholar 

  • Young, D. M., Schenk, A. K., Yang, S.-B., Jan, Y. N., & Jan, L. Y. (2010). Altered ultrasonic vocalizations in a tuberous sclerosis mouse model of autism. Proceedings of the National Academy of Sciences of the United States of America, 107, 11074–11079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zwaigenbaum, L., Bryson, S., Rogers, T., Roberts, W., Brian, J., & Szatmari, P. (2005). Behavioral manifestations of autism in the first year of life. International Journal of Developmental Neuroscience, 23, 143–152.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc T. Pisansky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pisansky, M.T., Gottesman, I.I., Gewirtz, J.C. (2016). Social Endophenotypes in Mouse Models of Psychiatric Disease. In: Gewirtz, J., Kim, YK. (eds) Animal Models of Behavior Genetics. Advances in Behavior Genetics. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3777-6_8

Download citation

Publish with us

Policies and ethics