Skip to main content

Chromatin Immunoprecipitation: Application to the Study of Asthma

  • Protocol
  • First Online:
Molecular Genetics of Asthma

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1434))

Abstract

Chromatin immunoprecipitation (ChIP) is a technique for studying interactions between proteins and DNA in living cells. A protein of interest is selectively immunoprecipitated from a chromatin preparation, to analyze the DNA sequences involved. ChIP can be used to determine whether a transcription factor interacts with a candidate target gene and to map the localization of histones with posttranslational modifications on the genome.

The protein-DNA interactions are captured in vivo by chemical cross-linking. Cell lysis, DNA fragmentation, and immunoaffinity purification of the protein of interest allow to co-purify DNA fragments that are associated with that protein. The enriched protein-DNA population is ready to be quantified by PCR to detect precipitated DNA fragments. The combination of ChIP with DNA microarray analysis (ChIP-on-chip) and high-throughput sequencing (ChIP-seq) has enabled to obtain profiles of transcription factor occupancy sites and histone modifications throughout the genome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aparicio JG, Viggiani CG, Gibson DG et al (2004) The Rpd3-Sin3 histone deacetylase regulates replication timing and enables intra-S origin control in Saccharomyces cerevisiae. Mol Cell Biol 24:4769–4780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    Article  CAS  PubMed  Google Scholar 

  3. Kuo MH, Allis CD (1999) In vivo cross-linking and immunoprecipitation for studying dynamic Protein:DNA associations in a chromatin environment. Methods 19:425–433

    Article  CAS  PubMed  Google Scholar 

  4. Gilmour DS, Lis JT (1986) RNA polymerase II interacts with the promoter region of the noninduced hsp70 gene in Drosophila melanogaster cells. Mol Cell Biol 6:3984–3989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gilmour DS, Lis JT (1985) In vivo interactions of RNA polymerase II with genes of Drosophila melanogaster. Mol Cell Biol 5:2009–2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gilmour DS, Lis JT (1984) Detecting protein-DNA interactions in vivo: distribution of RNA polymerase on specific bacterial genes. Proc Natl Acad Sci U S A 81:4275–4279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Solomon MJ, Larsen PL, Varshavsky A (1988) Mapping protein-DNA interactions in vivo with formaldehyde: evidence that histone H4 is retained on a highly transcribed gene. Cell 53:937–947

    Article  CAS  PubMed  Google Scholar 

  8. Hecht A, Strahl-Bolsinger S, Grunstein M (1996) Spreading of transcriptional repressor SIR3 from telomeric heterochromatin. Nature 383:92–96

    Article  CAS  PubMed  Google Scholar 

  9. Boyd KE, Farnham PJ (1997) Myc versus USF: discrimination at the cad gene is determined by core promoter elements. Mol Cell Biol 17:2529–2537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Parekh BS, Maniatis T (1999) Virus infection leads to localized hyperacetylation of histones H3 and H4 at the IFN-beta promoter. Mol Cell 3:125–129

    Article  CAS  PubMed  Google Scholar 

  11. Wathelet MG, Lin CH, Parekh BS et al (1998) Virus infection induces the assembly of coordinately activated transcription factors on the IFN-beta enhancer in vivo. Mol Cell 1:507–518

    Article  CAS  PubMed  Google Scholar 

  12. Hebbes TR, Thorne AW, Crane-Robinson C (1988) A direct link between core histone acetylation and transcriptionally active chromatin. EMBO J 7:1395–1402

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Collas P (2010) The current state of chromatin immunoprecipitation. Mol Biotechnol 45:87–100

    Article  CAS  PubMed  Google Scholar 

  14. Zeng PY, Vakoc CR, Chen ZC et al (2006) In vivo dual cross-linking for identification of indirect DNA-associated proteins by chromatin immunoprecipitation. Biotechniques 41:694–698

    Article  CAS  PubMed  Google Scholar 

  15. O’Neill LP, Turner BM (2003) Immunoprecipitation of native chromatin: NChIP. Methods 31:76–82

    Article  PubMed  Google Scholar 

  16. O’Neill LP, VerMilyea MD, Turner BM (2006) Epigenetic characterization of the early embryo with a chromatin immunoprecipitation protocol applicable to small cell populations. Nat Genet 38:835–841

    Article  PubMed  Google Scholar 

  17. Hanlon SE, Lieb JD (2004) Progress and challenges in profiling the dynamics of chromatin and transcription factor binding with DNA microarrays. Curr Opin Genet Dev 14:697–705

    Article  CAS  PubMed  Google Scholar 

  18. Sikder D, Kodadek T (2005) Genomic studies of transcription factor-DNA interactions. Curr Opin Chem Biol 9:38–45

    Article  CAS  PubMed  Google Scholar 

  19. Geisberg JV, Struhl K (2004) Quantitative sequential chromatin immunoprecipitation, a method for analyzing co-occupancy of proteins at genomic regions in vivo. Nucleic Acids Res 32:e151

    Article  PubMed  PubMed Central  Google Scholar 

  20. Loh YH, Wu Q, Chew JL et al (2006) The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet 38:431–440

    Article  CAS  PubMed  Google Scholar 

  21. Wie C, Wu Q, Vega VB et al (2006) A global map of p53 transcription-factor binding sites in the human genome. Cell 124:207–219

    Article  Google Scholar 

  22. Dahl JA, Collas P (2007) A quick and quantitative chromatin immunoprecipitation assay for small cell samples. Front Biosci 12:4925–4931

    Article  CAS  PubMed  Google Scholar 

  23. Dahl JA, Collas P (2007) Q2ChIP, a quick and quantitative chromatin immunoprecipitation assay, unravels epigenetic dynamics of developmentally regulated genes in human carcinoma cells. Stem Cells 25:1037–1046

    Article  CAS  PubMed  Google Scholar 

  24. Flanagin S, Nelson JD, Castner DG et al (2008) Microplate-based chromatin immunoprecipitation method, Matrix ChIP: a platform to study signaling of complex genomic events. Nucleic Acids Res 36:e17

    Article  PubMed  PubMed Central  Google Scholar 

  25. Fullwood MJ, Han Y, Wei CL et al (2010) Chromatin interaction analysis using paired-end tag sequencing. Curr Protoc Mol Biol Chapter 21, p Unit 21 15 1-25

    Google Scholar 

  26. Johnson KD, Bresnick EH (2002) Dissecting long-range transcriptional mechanisms by chromatin immunoprecipitation. Methods 26:27–36

    Article  CAS  PubMed  Google Scholar 

  27. Li G, Fullwood MJ, Xu H et al (2010) ChIA-PET tool for comprehensive chromatin interaction analysis with paired-end tag sequencing. Genome Biol 11:R22

    Article  PubMed  PubMed Central  Google Scholar 

  28. Nelson JD, Denisenko O, Bomsztyk K (2006) Protocol for the fast chromatin immunoprecipitation (ChIP) method. Nat Protoc 1:179–185

    Article  CAS  PubMed  Google Scholar 

  29. Nelson JD, Denisenko O, Sova P et al (2006) Fast chromatin immunoprecipitation assay. Nucleic Acids Res 34:e2

    Article  PubMed  PubMed Central  Google Scholar 

  30. Orlando V (2000) Mapping chromosomal proteins in vivo by formaldehyde-crosslinked-chromatin immunoprecipitation. Trends Biochem Sci 25:99–104

    Article  CAS  PubMed  Google Scholar 

  31. Ren B, Dynlacht BD (2004) Use of chromatin immunoprecipitation assays in genome-wide location analysis of mammalian transcription factors. Methods Enzymol 376:304–315

    Article  CAS  PubMed  Google Scholar 

  32. Lee TI, Johnstone SE, Young RA (2006) Chromatin immunoprecipitation and microarray-based analysis of protein location. Nat Protoc 1:729–748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Barski A, Cuddapah S, Cui K et al (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837

    Article  CAS  PubMed  Google Scholar 

  34. Johnson DS, Mortazavi A, Myers RM et al (2007) Genome-wide mapping of in vivo protein-DNA interactions. Science 316:1497–1502

    Article  CAS  PubMed  Google Scholar 

  35. Mikkelsen TS, Ku M, Jaffe DB et al (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448:553–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Robertson G, Hirst M, Bainbridge M et al (2007) Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat Methods 4:651–657

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the project “Efecto del Ácido Retinóico en la enfermedad alérgica. Estudio transcripcional y su traslación a la clínica,” PI13/00564, integrated into the “Plan Estatal de I + D + I 2013–2016” and cofunded by the “ISCIII-Subdirección General de Evaluación y Fomento de la investigación” and the European Regional Development Fund (FEDER).

We are grateful to members of our laboratory for their stimulating discussion of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asunción García-Sánchez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

García-Sánchez, A., Marqués-García, F. (2016). Chromatin Immunoprecipitation: Application to the Study of Asthma. In: Isidoro García, M. (eds) Molecular Genetics of Asthma. Methods in Molecular Biology, vol 1434. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3652-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3652-6_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3650-2

  • Online ISBN: 978-1-4939-3652-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics