Skip to main content

T-Cell Epitope Prediction of Chikungunya Virus

  • Protocol
  • First Online:
Chikungunya Virus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1426))

Abstract

There has been a growing demand for vaccines against Chikungunya virus (CHIKV), and epitope-based vaccine is a promising solution. Identification of CHIKV T-cell epitopes is critical to ensure successful trigger of immune response for epitope-based vaccine design. Bioinformatics tools are able to significantly reduce time and effort in this process by systematically scanning for immunogenic peptides in CHIKV proteins. This chapter provides the steps in utilizing machine learning algorithms to train on major histocompatibility complex (MHC) class I peptide binding data and build prediction models for the classification of binders and non-binders. The models could then be used in the identification and prediction of CHIKV T-cell epitopes for future vaccine design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weaver SC (2014) Arrival of chikungunya virus in the new world: prospects for spread and impact on public health. PLoS Negl Trop Dis 8(6):e2921. doi:10.1371/journal.pntd.0002921

    Article  PubMed  PubMed Central  Google Scholar 

  2. Weaver SC, Osorio JE, Livengood JA et al (2012) Chikungunya virus and prospects for a vaccine. Expert Rev Vaccines 11(9):1087–1101. doi:10.1586/erv.12.84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kaur P, Chu JJ (2013) Chikungunya virus: an update on antiviral development and challenges. Drug Discov Today 18(19-20):969–983. doi:10.1016/j.drudis.2013.05.002

    Article  CAS  PubMed  Google Scholar 

  4. Wauquier N, Becquart P, Nkoghe D et al (2011) The acute phase of Chikungunya virus infection in humans is associated with strong innate immunity and T CD8 cell activation. J Infect Dis 204(1):115–123. doi:10.1093/infdis/jiq006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tong JC, Tan TW, Ranganathan S (2007) Methods and protocols for prediction of immunogenic epitopes. Brief Bioinform 8(2):96–108. doi:10.1093/bib/bbl038

    Article  CAS  PubMed  Google Scholar 

  6. Lafuente EM, Reche PA (2009) Prediction of MHC-peptide binding: a systematic and comprehensive overview. Curr Pharm Des 15(28):3209–3220

    Article  CAS  PubMed  Google Scholar 

  7. Vita R, Overton JA, Greenbaum JA et al (2015) The immune epitope database (IEDB) 3.0. Nucleic Acids Res 43(Database issue):D405–D412. doi:10.1093/nar/gku938

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lata S, Bhasin M, Raghava GP (2009) MHCBN 4.0: a database of MHC/TAP binding peptides and T-cell epitopes. BMC Res Notes 2:61. doi:10.1186/1756-0500-2-61

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hall M, Frank E, Holmes G et al (2009) The WEKA Data Mining Software: an update. SIGKDD Explor 11(1):10–18. doi:10.1145/1656274.1656278

    Article  Google Scholar 

  10. Sette A, Vitiello A, Reherman B et al (1994) The relationship between class I binding affinity and immunogenicity of potential cytotoxic T cell epitopes. J Immunol 153(12):5586–5592

    CAS  PubMed  Google Scholar 

  11. Grantham R (1974) Amino acid difference formula to help explain protein evolution. Science 185(4154):862–864

    Article  CAS  PubMed  Google Scholar 

  12. Engelman DM, Steitz TA, Goldman A (1986) Identifying nonpolar transbilayer helices in amino acid sequences of membrane proteins. Annu Rev Biophys Biomol Struct 15:321–353. doi:10.1146/annurev.bb.15.060186.001541

    Article  CAS  Google Scholar 

  13. Klein P, Kanehisa M, DeLisi C (1984) Prediction of protein function from sequence properties. Discriminant analysis of a data base. Biochim Biophys Acta 787(3):221–226

    Article  CAS  PubMed  Google Scholar 

  14. Tomii K, Kanehisa M (1996) Analysis of amino acid indices and mutation matrices for sequence comparison and structure prediction of proteins. Protein Eng 9(1):27–36

    Article  CAS  PubMed  Google Scholar 

  15. Dubchak I, Muchnik I, Mayor C et al (1999) Recognition of a protein fold in the context of the Structural Classification of Proteins (SCOP) classification. Proteins 35(4):401–407

    Article  CAS  PubMed  Google Scholar 

  16. Cui J, Han LY, Lin HH et al (2007) Prediction of MHC-binding peptides of flexible lengths from sequence-derived structural and physicochemical properties. Mol Immunol 44(5):866–877. doi:10.1016/j.molimm.2006.04.001

    Article  CAS  PubMed  Google Scholar 

  17. Li ZR, Lin HH, Han LY et al (2006) PROFEAT: a web server for computing structural and physicochemical features of proteins and peptides from amino acid sequence. Nucleic Acids Res 34(Web Server Issue):W32–W37. doi:10.1093/nar/gkl305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. El-Manzalawy Y, Dobbs D, Honavar V (2008) On evaluating MHC-II binding peptide prediction methods. PLoS One 3(9):e3268. doi:10.1371/journal.pone.0003268

    Article  PubMed  PubMed Central  Google Scholar 

  19. Fawcett T (2006) An introduction to ROC analysis. Pattern Recogn Lett 27(8):861–874. doi:10.1016/j.patrec.2005.10.010

    Article  Google Scholar 

  20. Linden A (2006) Measuring diagnostic and predictive accuracy in disease management: an introduction to receiver operating characteristic (ROC) analysis. J Eval Clin Pract 12(2):132–139. doi:10.1111/1365-2753.2005.00598.X

    Article  PubMed  Google Scholar 

  21. Matthews BW (1975) Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim Biophys Acta 405(2):442–451

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joo Chuan Tong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Eng, C.L.P., Tan, T.W., Tong, J.C. (2016). T-Cell Epitope Prediction of Chikungunya Virus. In: Chu, J., Ang, S. (eds) Chikungunya Virus. Methods in Molecular Biology, vol 1426. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3618-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3618-2_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3616-8

  • Online ISBN: 978-1-4939-3618-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics