Skip to main content

Protein Crystallizability

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1415))

Abstract

Obtaining diffracting quality crystals remains a major challenge in protein structure research. We summarize and compare methods for selecting the best protein targets for crystallization, construct optimization and crystallization condition design. Target selection methods are divided into algorithms predicting the chance of successful progression through all stages of structural determination (from cloning to solving the structure) and those focusing only on the crystallization step. We tried to highlight pros and cons of different approaches examining the following aspects: data size, redundancy and representativeness, overfitting during model construction, and results evaluation. In summary, although in recent years progress was made and several sequence properties were reported to be relevant for crystallization, the successful prediction of protein crystallization behavior and selection of corresponding crystallization conditions continue to challenge structural researchers.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Laskowski RA, Thornton JM (2008) Understanding the molecular machinery of genetics through 3D structures. Nature 9:141–151

    CAS  Google Scholar 

  2. Sanderson MR, Skelly JV (2007) Macromolecular crystallography conventional and high-throughput methods. Oxford University Press, Oxford

    Book  Google Scholar 

  3. McPherson A (1999) Crystallization of biological macromolecules. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  4. Doye JPK, Louis AA, Vendruscolo M (2004) Inhibition of protein crystallization by evolutionary negative design. Phys Biol 1:P9–P13

    Article  CAS  PubMed  Google Scholar 

  5. Bergfors T (1999) Protein crystallization: techniques, strategies, and tips. International University Line, Uppsala

    Google Scholar 

  6. Niesen FH, Berglund H, Vedadi M (2007) The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat Protoc 2:2212–2221

    Article  CAS  PubMed  Google Scholar 

  7. Derewenda ZS (2004) Rational protein crystallization by mutational surface engineering. Structure 12:529–535

    Article  CAS  PubMed  Google Scholar 

  8. Derewenda ZS (2004) The use of recombinant methods and molecular engineering in protein crystallization. Methods 34:354–363

    Article  CAS  PubMed  Google Scholar 

  9. Cooper DR, Boczek T, Grelewska K et al (2007) Protein crystallization by surface entropy reduction: optimization of the SER strategy. Acta Crystallogr D Biol Crystallogr 63:636–645

    Article  CAS  PubMed  Google Scholar 

  10. Braig K, Otwinowski Z, Hegde R et al (1994) The crystal structure of the bacterial chaperonin GroEL at 2.8 A. Nature 371:578–586

    Article  CAS  PubMed  Google Scholar 

  11. Lawson DM, Artymiuk PJ, Yewdall SJ et al (1991) Solving the structure of human H ferritin by genetically engineering intermolecular crystal contacts. Nature 349:541–544

    Article  CAS  PubMed  Google Scholar 

  12. McElroy HE, Sisson GW, Schoettlin WE et al (1992) Studies on engineering crystallizability by mutation of surface residues of human thymidylate synthase. J Cryst Growth 122: 265–272

    Article  CAS  Google Scholar 

  13. Yamada H, Tamada T, Kosaka M et al (2007) “Crystal lattice engineering”, an approach to engineer protein crystal contacts by creating intermolecular symmetry: crystallization and structure determination of a mutant human RNase 1 with a hydrophobic interface of leucines. Protein Sci 16:1389–1397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Goldschmidt L, Cooper DR, Derewenda ZS, Eisenberg D (2007) Toward rational protein crystallization: a Web server for the design of crystallizable protein variants. Protein Sci 16:1569–1576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Smyth DR, Mrozkiewicz MK, McGrath WJ et al (2003) Crystal structures of fusion proteins with large-affinity tags. Protein Sci 12:1313–1322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kobe B, Ve T, Williams SJ (2015) Fusion-protein-assisted protein crystallization. Acta Crystallogr F Struct Biol Commun 71:861–869

    Article  CAS  PubMed  Google Scholar 

  17. Berman HM, Westbrook J, Feng Z et al (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Christendat D, Yee A, Dharamsi A et al (2000) Structural proteomics of an archaeon. Nat Struct Biol 7:903–909

    Article  CAS  PubMed  Google Scholar 

  19. Burley SK (2000) An overview of structural genomics. Nat Struct Biol 7(Suppl):932–934

    Article  CAS  PubMed  Google Scholar 

  20. Witten IH, Frank E (2005) Data Mining: practical machine learning tools and techniques, 2nd Edition. Morgan Kaufmann, San Francisco

    Google Scholar 

  21. Smialowski P, Frishman D, Kramer S (2010) Pitfalls of supervised feature selection. Bioinformatics 26:440–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Krstajic D, Buturovic LJ, Leahy DE, Thomas S (2014) Cross-validation pitfalls when selecting and assessing regression and classification models. J Cheminform 6:10

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kimber MS, Houston S, Nec A et al (2003) Data mining crystallization databases: knowledge-based approaches to optimize protein crystal screens. Proteins 568:562–568

    Article  CAS  Google Scholar 

  24. Goh CS, Lan N, Douglas SM et al (2004) Mining the structural genomics pipeline: identification of protein properties that affect high-throughput experimental analysis. J Mol Biol 336:115–130

    Article  CAS  PubMed  Google Scholar 

  25. Tatusov RL, Galperin MY, Natale DA, Koonin EV (2000) The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 28:33–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Canaves JM, Page R, Wilson IA, Stevens RC (2004) Protein biophysical properties that correlate with crystallization success in Thermotoga maritima: maximum clustering strategy for structural genomics. J Mol Biol 344:977–991

    Article  CAS  PubMed  Google Scholar 

  27. Overton IM, Barton GJ (2006) A normalised scale for structural genomics target ranking: the OB-Score. FEBS Lett 580:4005–4009

    Article  CAS  PubMed  Google Scholar 

  28. Apweiler R, Bairoch A, Wu CH et al (2004) UniProt: the Universal Protein knowledgebase. Nucleic Acids Res 32(Database): D115–D119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Overton IM, Padovani G, Girolami MA, Barton GJ (2008) ParCrys: a Parzen window density estimation approach to protein crystallization propensity prediction. Bioinformatics 24:901–907

    Article  CAS  PubMed  Google Scholar 

  30. Wang G, Dunbrack RL (2003) PISCES: a protein sequence culling server. Bioinformatics 19:1589–1591

    Article  CAS  PubMed  Google Scholar 

  31. Richard O, Duda PEH (1973) Pattern classification and scene analysis. Wiley-Interscience, New York

    Google Scholar 

  32. Chen L, Oughtred R, Berman HM, Westbrook J (2004) TargetDB: a target registration database for structural genomics projects. Bioinformatics 20:2860–2862

    Article  CAS  PubMed  Google Scholar 

  33. Altschul SF, Madden TL, Schaffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bateman A, Birney E, Durbin R et al (2000) The Pfam protein families database. Nucleic Acids Res 28:263–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Eddy S (2003) HMMER user’s guide (http://saf.bio.caltech.edu/saf_manuals/hmmer/v2_3_2.pdf)

  36. Barton GJ, Sternberg MJ (1987) A strategy for the rapid multiple alignment of protein sequences. Confidence levels from tertiary structure comparisons. J Mol Biol 198:327–337

    Article  CAS  PubMed  Google Scholar 

  37. Engelman DM, Steitz TA, Goldman A (1986) Identifying nonpolar transbilayer helices in amino acid sequences of membrane proteins. Annu Rev Biophys Biophys Chem 15:321–353

    Article  CAS  PubMed  Google Scholar 

  38. Wootton JC (1994) Non-globular domains in protein sequences: automated segmentation using complexity measures. Comput Chem 18:269–285

    Article  CAS  PubMed  Google Scholar 

  39. Kurgan L, Razib AA, Aghakhani S et al (2009) CRYSTALP2: sequence-based protein crystallization propensity prediction. BMC Struct Biol 9:50

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Smialowski P, Schmidt T, Cox J et al (2006) Will my protein crystallize? A sequence-based predictor. Proteins 62:343–355

    Article  CAS  PubMed  Google Scholar 

  41. Hall MA (1999) Correlation-based Feature Selection for Machine Learning. Methodology i20:1–5

    Google Scholar 

  42. Chen K, Kurgan L, Rahbari M (2007) Prediction of protein crystallization using collocation of amino acid pairs. Biochem Biophys Res Commun 355:764–769

    Article  CAS  PubMed  Google Scholar 

  43. Overton IM, van Niekerk CAJ, Barton GJ (2011) XANNpred: Neural nets that predict the propensity of a protein to yield diffraction-quality crystals. Proteins 79:1027–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rost B (1999) Twilight zone of protein sequence alignments. Protein Eng 12:85–94

    Article  CAS  PubMed  Google Scholar 

  45. Cole C, Barber JD, Barton GJ (2008) The Jpred 3 secondary structure prediction server. Nucleic Acids Res 36:W197–W201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yang ZR, Thomson R, Mcneil P, Esnouf RM (2005) Structural bioinformatics RONN: the bio-basis function neural network technique applied to the detection of natively disordered regions in proteins. Bioinformatics 21: 3369–3376

    Article  CAS  PubMed  Google Scholar 

  47. Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580

    Article  CAS  PubMed  Google Scholar 

  48. Mizianty MJ, Kurgan L (2011) Sequence-based prediction of protein crystallization, purification and production propensity. Bioinformatics 27:i24–i33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. McGuffin LJ, Bryson K, Jones DT (2000) The PSIPRED protein structure prediction server. Bioinformatics 16:404–405

    Article  CAS  PubMed  Google Scholar 

  50. Ward JJ, Sodhi JS, McGuffin LJ et al (2004) Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J Mol Biol 337:635–645

    Article  CAS  PubMed  Google Scholar 

  51. Faraggi E, Xue B, Zhou Y (2009) Improving the prediction accuracy of residue solvent accessibility and real-value backbone torsion angles of proteins by guided-learning through a two-layer neural network. Proteins 74:847–856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang H, Wang M, Tan H et al (2014) PredPPCrys: accurate prediction of sequence cloning, protein production, purification and crystallization propensity from protein sequences using multi-step heterogeneous feature fusion and selection. PLoS One 9:e105902

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Ward JJ, McGuffin LJ, Bryson K et al (2004) The DISOPRED server for the prediction of protein disorder. Bioinformatics 20:2138–2139

    Article  CAS  PubMed  Google Scholar 

  54. Magnan CN, Baldi P (2014) SSpro/ACCpro 5: almost perfect prediction of protein secondary structure and relative solvent accessibility using profiles, machine learning and structural similarity. Bioinformatics 30:2592–2597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rao HB, Zhu F, Yang GB et al (2011) Update of PROFEAT: a web server for computing structural and physicochemical features of proteins and peptides from amino acid sequence. Nucleic Acids Res 39:W385–W390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Valafar H, Prestegard JH, Valafar F (2002) Datamining protein structure databanks for crystallization patterns of proteins. Ann N Y Acad Sci 980:13–22

    Article  CAS  PubMed  Google Scholar 

  57. Huang Y, Niu B, Gao Y et al (2010) CD-HIT Suite: a web server for clustering and comparing biological sequences. Bioinformatics 26:680–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Slabinski L, Jaroszewski L, Rychlewski L et al (2007) XtalPred: a web server for prediction of protein crystallizability. Bioinformatics 23:3403–3405

    Article  CAS  PubMed  Google Scholar 

  59. Lupas A, Van Dyke M, Stock J (1991) Predicting coiled coils from protein sequences. Science 252:1162–1164

    Article  CAS  PubMed  Google Scholar 

  60. Genest C (1984) Aggregation opinions through logarithmic pooling. Theor Decis 17:61–70

    Article  Google Scholar 

  61. Jahandideh S, Jaroszewski L, Godzik A (2014) Improving the chances of successful protein structure determination with a random forest classifier. Acta Crystallogr D Biol Crystallogr 70:627–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Petersen B, Petersen TN, Andersen P et al (2009) A generic method for assignment of reliability scores applied to solvent accessibility predictions. BMC Struct Biol 9:51

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Miller S, Janin J, Lesk AM, Chothia C (1987) Interior and surface of monomeric proteins. J Mol Biol 196:641–656

    Article  CAS  PubMed  Google Scholar 

  64. Breiman L (2001) Random forests. Mach Learn 45:5–32

    Article  Google Scholar 

  65. Price WN, Chen Y, Handelman SK et al (2009) Understanding the physical properties that control protein crystallization by analysis of large-scale experimental data. Nat Biotechnol 27:51–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rost B, Yachdav G, Liu J (2004) The PredictProtein server. Nucleic Acids Res 32:W321–W326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Babnigg G, Joachimiak A (2010) Predicting protein crystallization propensity from protein sequence. J Struct Funct Genomics 11:71–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Babnigg G, Giometti CS (2004) GELBANK: a database of annotated two-dimensional gel electrophoresis patterns of biological systems with completed genomes. Nucleic Acids Res 32:D582–D585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kawashima S, Ogata H, Kanehisa M (1999) AAindex: Amino Acid Index Database. Nucleic Acids Res 27:368–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kohonen T (1982) Self-organized formation of topologically correct feature maps. Biol Cybern 43:56–69

    Article  Google Scholar 

  71. Liu J, Rost B (2004) Sequence-based prediction of protein domains. Nucleic Acids Res 32:3522–3530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Orengo CA, Michie AD, Jones S et al (1997) CATH--a hierarchic classification of protein domain structures. Structure 5:1093–1108

    Article  CAS  PubMed  Google Scholar 

  73. Berezin C, Glaser F, Rosenberg J et al (2004) ConSeq: the identification of functionally and structurally important residues in protein sequences. Bioinformatics 20:1322–1324

    Article  CAS  PubMed  Google Scholar 

  74. Thibert B, Bredesen DE, del Rio G (2005) Improved prediction of critical residues for protein function based on network and phylogenetic analyses. BMC Bioinformatics 6:213

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Dosztanyi Z, Csizmok V, Tompa P et al (2005) IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 21:3433–3434

    Article  CAS  PubMed  Google Scholar 

  76. Wootton JC, Federhen S (1996) Analysis of compositionally biased regions in sequence databases. Methods Enzymol 266:554–571

    Article  CAS  PubMed  Google Scholar 

  77. Pollastri G, McLysaght A (2005) Porter: a new, accurate server for protein secondary structure prediction. Bioinformatics 21:1719–1720

    Article  CAS  PubMed  Google Scholar 

  78. Adamczak R, Porollo A, Meller J (2004) Accurate prediction of solvent accessibility using neural networks – based regression. Bioinformatics 767:753–767

    Google Scholar 

  79. Rehm T, Huber R, Holak TA (2002) Application of NMR in structural proteomics: screening for proteins amenable to structural analysis. Structure 10:1613–1618

    Article  CAS  PubMed  Google Scholar 

  80. Hamuro Y, Burns L, Canaves J et al (2002) Domain organization of D-AKAP2 revealed by enhanced deuterium exchange-mass spectrometry (DXMS). J Mol Biol 321:703–714

    Article  CAS  PubMed  Google Scholar 

  81. Cohen SL, Ferre-D’Amare AR, Burley SK, Chait BT (1995) Probing the solution structure of the DNA-binding protein Max by a combination of proteolysis and mass spectrometry. Protein Sci 4:1088–1099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bordner AJ, Abagyan R (2005) Statistical analysis and prediction of protein-protein interfaces. Proteins 60:353–366

    Article  CAS  PubMed  Google Scholar 

  83. Ofran Y, Rost B (2003) Analysing six types of protein-protein interfaces. J Mol Biol 325: 377–387

    Article  CAS  PubMed  Google Scholar 

  84. Fellouse FA, Wiesmann C, Sidhu SS (2004) Synthetic antibodies from a four-amino-acid code: a dominant role for tyrosine in antigen recognition. PNAS 101:12467–12472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lo Conte L, Chothia C, Janin J (1999) The atomic structure of protein-protein recognition sites. J Mol Biol 285:2177–2198

    Article  CAS  PubMed  Google Scholar 

  86. Dale GE, Oefner C, D’Arcy A (2003) The protein as a variable in protein crystallization. J Struct Biol 142:88–97

    Article  CAS  PubMed  Google Scholar 

  87. Cox M, Weber PC (1988) An investigation of protein crystallization parameters using successive automated grid search (SAGS). J Cryst Growth 90:318–324

    Article  CAS  Google Scholar 

  88. Carter CW Jr, Carter CW (1979) Protein crystallization using incomplete factorial experiments. J Biol Chem 254:12219–12223

    CAS  PubMed  Google Scholar 

  89. Jancarik J, Kim SH (1991) Sparse matrix sampling: a screening method for crystallization of proteins. J Appl Crystallogr 24:409–411

    Article  CAS  Google Scholar 

  90. Stura EA, Nemerow GR, Wilson IA (1991) Strategies in protein crystallization. J Cryst Growth 110:1–12

    Article  Google Scholar 

  91. McPherson A (1992) Two approaches to the rapid screening of crystallization conditions. J Cryst Growth 122:161–167

    Article  CAS  Google Scholar 

  92. Hennessy D, Buchanan B, Subramanian D et al (2000) Statistical methods for the objective design of screening procedures for macromolecular crystallization. Acta Crystallogr D Biol Crystallogr 56:817–827

    Article  CAS  PubMed  Google Scholar 

  93. Gilliland GL, Tung M, Blakeslee DM, Ladner JE (1994) Biological Macromolecule Crystallization Database, Version 3.0: new features, data and the NASA archive for protein crystal growth data. Acta Crystallogr D Biol Crystallogr 50:408–413

    Article  CAS  PubMed  Google Scholar 

  94. Newman J (2005) Expanding screening space through the use of alternative reservoirs in vapor-diffusion experiments. Acta Crystallogr D Biol Crystallogr 61:490–493

    Article  PubMed  CAS  Google Scholar 

  95. Dunlop KV, Hazes B (2005) A modified vapor-diffusion crystallization protocol that uses a common dehydrating agent. Acta Crystallogr D Biol Crystallogr 61:1041–1048

    Article  PubMed  CAS  Google Scholar 

  96. Kantardjieff KA, Jamshidian M, Rupp B (2004) Distributions of pI versus pH provide prior information for the design of crystallization screening experiments: response to comment on “Protein isoelectric point as a predictor for increased crystallization screening efficiency”. Bioinformatics 20:2171–2174

    Article  CAS  Google Scholar 

  97. Kantardjieff KA, Rupp B (2004) Protein isoelectric point as a predictor for increased crystallization screening efficiency. Bioinformatics 20:2162–2168

    Article  CAS  PubMed  Google Scholar 

  98. Page R, Grzechnik SK, Canaves JM et al (2003) Shotgun crystallization strategy for structural genomics: an optimized two-tiered crystallization screen against the Thermatoga maritima proteome. Acta Crystallogr D Biol Crystallogr 59:1028–1037

    Article  PubMed  CAS  Google Scholar 

  99. Izaac A, Schall CA, Mueser TC (2006) Assessment of a preliminary solubility screen to improve crystallization trials: uncoupling crystal condition searches. Acta Crystallogr D Biol Crystallogr 62:833–42

    Article  PubMed  CAS  Google Scholar 

  100. Anderson MJ, Hansen CL, Quake SR (2006) Phase knowledge enables rational screens for protein crystallization. PNAS 103: 16746–16751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Page R, Stevens RC (2004) Crystallization data mining in structural genomics: using positive and negative results to optimize protein crystallization screens. Methods 34: 373–389

    Article  CAS  PubMed  Google Scholar 

  102. Page R, Deacon AM, Lesley SA, Stevens RC (2005) Shotgun crystallization strategy for structural genomics II: crystallization conditions that produce high resolution structures for T. maritima proteins. J Struct Funct Genomics 6:209–217

    Article  CAS  PubMed  Google Scholar 

  103. Gao W, Li SX, Bi RC (2005) An attempt to increase the efficiency of protein crystal screening: a simplified screen and experiments. Acta Crystallogr D Biol Crystallogr 61:776–779

    Article  PubMed  CAS  Google Scholar 

  104. Gileadi O, Knapp S, Lee WH et al (2007) The scientific impact of the Structural Genomics Consortium: a protein family and ligand-centered approach to medically-relevant human proteins. J Struct Funct Genomics 8:107–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Durbin SD, Feher G (1996) Protein crystallization. Annu Rev Phys Chem 47:171–204

    Article  CAS  PubMed  Google Scholar 

  106. Smialowski P, Martin-Galiano AJ, Cox J, Frishman D (2007) Predicting experimental properties of proteins from sequence by machine learning techniques. Curr Protein Pept Sci 8:121–133

    Article  CAS  PubMed  Google Scholar 

  107. Mikolajka A, Yan X, Popowicz GM et al (2006) Structure of the N-terminal domain of the FOP (FGFR1OP) protein and implications for its dimerization and centrosomal localization. J Mol Biol 359:863–875

    Article  CAS  PubMed  Google Scholar 

  108. Dong A, Xu X, Edwards AM et al (2007) In situ proteolysis for protein crystallization and structure determination. Nat Methods 4: 1019–1021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ksiazek D, Brandstetter H, Israel L et al (2003) Structure of the N-terminal domain of the adenylyl cyclase-associated protein (CAP) from Dictyostelium discoideum. Structure 11:1171–1178

    Article  CAS  PubMed  Google Scholar 

  110. Kim KM, Yi EC, Baker D, Zhang KY (2001) Post-translational modification of the N-terminal His tag interferes with the crystallization of the wild-type and mutant SH3 domains from chicken src tyrosine kinase. Acta Crystallogr D Biol Crystallogr 57:759–762

    Article  CAS  PubMed  Google Scholar 

  111. Charles M, Veesler S, Bonnete F (2006) MPCD: a new interactive on-line crystallization data bank for screening strategies. Acta Crystallogr D Biol Crystallogr 62:1311–1318

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pawel Smialowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Smialowski, P., Wong, P. (2016). Protein Crystallizability. In: Carugo, O., Eisenhaber, F. (eds) Data Mining Techniques for the Life Sciences. Methods in Molecular Biology, vol 1415. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3572-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3572-7_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3570-3

  • Online ISBN: 978-1-4939-3572-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics