Skip to main content

Advanced Imaging Techniques

  • Chapter
  • First Online:
Advanced Imaging Techniques in Clinical Pathology

Abstract

Microscopy techniques provide an efficient and unique approach to the study of fixed tissues and living cells and facilitate the definition and characterization of pathological conditions with high specificity and sensitivity. Recent advances in optical techniques and imaging methods have provided exciting insights into the field of translational research, extending possible applications for these techniques and enabling in vivo animal and human imaging of both physiological processes and pathological conditions. Here, we provide an overview of the recent data arising from such studies of electron and multiphoton microscopy, in vivo microendoscopy, and hybrid molecular imaging, such as positron emission tomography (PET)/computed tomography and PET/magnetic resonance and multimodality tracers. First, we give a brief introduction to the physical mechanisms underlying these imaging techniques. Then we introduce these advanced imaging techniques in more detail, with a description of how they are performed, what needs to be considered, and what practical advantages they can bring to in vivo characterization of human pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arrebola F, Cañizares J, Cubero MA, Crespo PV, Warley A, Fernández-Segura E. Biphasic behavior of changes in elemental composition during staurosporine-induced apoptosis. Apoptosis. 2005;10(6):1317–31.

    Article  CAS  PubMed  Google Scholar 

  2. Zhang M, Methot D, Poppa V, et al. Cardiomyocyte grafting for CardiacRepair: graft cell death and anti-DeathStrategies. J Mol Cell Cardiol. 2001;33:907–21.

    Article  CAS  PubMed  Google Scholar 

  3. Lucic V, Rigort A, Baumeister W. Cryo-electron tomography: the challenge of doing structural biology in situ. J Cell Biol. 2013;202(3):407–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Millonig G, Marinozzi V. Fixation and embedding in electron microscopy. Adv Optical Electron Microsc. 1968;2:251.

    Google Scholar 

  5. Stein O, Stein Y. Light and electron microscopic radioautography of lipids: techniques and biological applications. Adv Lipid Res. 1971;9:1–72.

    Article  CAS  PubMed  Google Scholar 

  6. Mizuhira V, Futaesaku Y. New fixation method for biological membranes using tannic acids. Acta Histochem Cytochem. 1972;5:233–6.

    Article  Google Scholar 

  7. Hirsch JG, Fedorko ME. Ultrastructure of human leukocytes after simultaneous fixation with glutaraldehyde and osmium tetroxide and “postfixation” in uranyl acetate. J Cell Biol. 1968;38:615–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Silva MT, Guerra FC, Magalhaes MM. The fixative action of uranyl acetate in electron microscopy. Experientia. 1968;24:1074.

    Article  CAS  PubMed  Google Scholar 

  9. Mollenhauer HH. Artifacts caused by dehydration and epoxy embedding in transmission electron microscopy. Microsc Res Tech. 1993;26:496–512.

    Article  CAS  PubMed  Google Scholar 

  10. Tokuyasu KT. A technique for ultracryotomy of cell suspensions and tissues. J Cell Biol. 1973;57:551–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Griffiths G, McDowall A, Back R, Dubochet J. On the preparation of cryosections for immunocytochemistry. J Ultrastruct Res. 1984;89:65–78.

    Article  CAS  PubMed  Google Scholar 

  12. Slot JW, Geuze HJ. Cryosectioning and immunolabeling. Nat Protoc. 2007;2:2480–91.

    Article  CAS  PubMed  Google Scholar 

  13. Herpers B, Xanthakis D, Rabouille C. ISH-IEM: a sensitive method to detect endogenous mRNAs at the ultrastructural level. Nat Protoc. 2010;5:678–87.

    Article  CAS  PubMed  Google Scholar 

  14. Müller HR. Freeze-drying as a fixation technic for plant cells. J Ultrastruct Res. 1957;1:109–37.

    Article  PubMed  Google Scholar 

  15. Steere RL. Electron microscopy of structural detail in frozen biological specimens. J Biophys Biochem Cytol. 1957;3:45–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Moor H, Muhlethaler K, Waldner H, Frey-Wyssling A. A new freezing ultramicrotome. J Biophys Biochem Cytol. 1961;10:1–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Braet F, De Zanger R, Wisse E. Drying cells for SEM, AFM and TEM by hexamethyldisilazane: a study on hepatic endothelial cells. J Microsc. 1997;186:84–8713.

    Article  CAS  PubMed  Google Scholar 

  18. Bray DF, Bagu J, Koegler P. Comparison of hexamethyldisilazane (HMDS), Peldri II, and critical-point drying methods for scanning electron microscopy of biological specimens. Microsc Res Tech. 1993;26:489–95.

    Article  CAS  PubMed  Google Scholar 

  19. Moor H. Theory and practice of high pressure freezing. In: Steinbrecht RA, Zierold K, editors. Cryotechniques in biological electron microscopy. Berlin: Springer; 1987. p. 175–91.

    Chapter  Google Scholar 

  20. Allison DP, Daw CS, Rorvik MC. The construction and operation of a simple inexpensive slam freezing device for electron microscopy. J Microsc. 1987;147:103–8.

    Article  CAS  PubMed  Google Scholar 

  21. Dubochet J. The physics of rapid cooling and its implications for cryoimmobilization of cells. Methods Cell Biol. 2007;79:7–21.

    Article  CAS  PubMed  Google Scholar 

  22. Escaig J. New instruments which facilitate rapid freezing at 83 K and 6 K. J Microsc. 1982;126:221–9.

    Article  Google Scholar 

  23. Meryman HT. Cryopreservation of living cells: principles and practice. Transfusion. 2007;47:935–45.

    Article  CAS  PubMed  Google Scholar 

  24. De Carlo S. Plunge freezing (Holey Carbon Method). In: Cavelier A, Spehner D, Humbel BM, editors. Handbook of cryo-preparation methods for electron microscopy. Boca Raton, FL: CRC Press; 2009. p. 49–68.

    Google Scholar 

  25. Galway ME, Heckman Jr JW, Hyde GJ, Fowke LC. Advances in high-pressure and plunge-freeze fixation. Methods Cell Biol. 1995;49:3–19.

    Article  CAS  PubMed  Google Scholar 

  26. Nitta K, Kaneko Y. Simple plunge freezing applied to plant tissues for capturing the ultrastructure close to the living state. J Electron Microsc (Tokyo). 2004;53:677–80.

    Article  Google Scholar 

  27. Richter T, Biel SS, Sattler M, Wenck H, Wittern KP, Wiesendanger R, Wepf R. Pros and cons: cryo-electron microscopic evaluation of block faces versus cryo-sections from frozen-hydrated skin specimens prepared by different techniques. J Microsc. 2007;225:201–7.

    Article  CAS  PubMed  Google Scholar 

  28. Riehle U, Hoechli M. The theory and technique of high pressure freezing. In: Benedetti EL, Favard P, editors. Freeze etching techniques and applications. Paris: SociétéFrançaise de MicroscopieElectronique; 1973. p. 31–61.

    Google Scholar 

  29. Brown E, Mantell J, Carter DA, Tilly G, Verkate B. Studying intracellular transport using high pressure freezing and correlative light electron microscopy. Semin Cell Dev Biol. 2009;20:910–9.

    Article  CAS  PubMed  Google Scholar 

  30. Claeys M, Vanhecke D, Couvreur M, Tytgat T, Coomans A, Borgonie G. High-pressure freezing and freeze substitution of gravid Caenorhabditis elegans (Nematoda: Rhabditida) for transmission electron microscopy. Nematology. 2004;6:319–27.

    Article  Google Scholar 

  31. Hohenberg H, Tobler M, Muller M. High-pressure freezing of tissue obtained by fine-needle biopsy. J Microsc. 1996;183:133–9.

    Article  CAS  PubMed  Google Scholar 

  32. Vanhecke D, Graber W, Herrmann G, Al-Amoudi A, Eggli P, Studer D. A rapid microbiopsy system to improve the preservation of biological samples prior to high-pressure freezing. 2003. J Microsc.

    Google Scholar 

  33. Shanbhag SR, Park SK, Pikielny CW, Steinbrecht RA. Gustatory organs of drosophila melanogaster: the structure and expression of the putative odorant-binding protein PBPRP2. Cell Tissue Res. 2001;304:423–37.

    Article  CAS  PubMed  Google Scholar 

  34. Wang L, Humbel BM, Roubos EW. High-pressure freezing followed by cryosubstitution as a tool for preserving high-quality ultrastructure and immunoreactivity in the Xenopuslaevis pituitary gland. Brain Res Brain Res Protoc. 2005;15:155–63.

    Article  CAS  PubMed  Google Scholar 

  35. Moor H, Mühletaler K. Fine structure in frozen-etched yeast cells. J Cell Biol. 1963;17:609–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Van Harreveld A, Crowell J. Electron microscopy after rapid freezing on a metal surface and substitution Wxation. Anat Rec. 1964;149:381–5.

    Article  Google Scholar 

  37. Al-Amoudi A, Chang JJ, Leforestier A, McDowall A, Salamin LM, Norlen LP, Richter K, Blanc NS, Studer D, Dubochet J. Cryo-electron microscopy of vitreous sections. EMBO J. 2004;23:3583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dubochet J, McDowall AW, Menge B, Schmid EN, Lickfeld KG. Electron microscopy of frozen-hydrated bacteria. J Bacteriol. 1983;155:381–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Branton D. Freeze-etching studies of membrane structure. Philos Trans R Soc Lond B Biol Sci. 1971;261:133–8.

    Article  CAS  PubMed  Google Scholar 

  40. Heuser JE, Reese TS, Dennis MJ, Jan Y, Jan L, Evans L. Synaptic vesicle exocytosis captured by quick freezing and correlated with quantal transmitter release.J. Cell Biol. 1979;81:275–300.

    Article  CAS  Google Scholar 

  41. Guerquin-Kern JL, Wu TD, Quintana C, Croisy A. Progress in analytical imaging of the cell by dynamic secondary ion mass spectrometry (SIMS microscopy). Biochim Biophys Acta. 2005;1724:228–38.

    Article  CAS  PubMed  Google Scholar 

  42. Lucic V, Forster F, Baumeister W. Structural studies by electron tomography: from cells to molecules. Annu Rev Biochem. 2005;74:833–65.

    Article  CAS  PubMed  Google Scholar 

  43. Lucic V, Leis A, Baumeister W. Cryo-electron tomography of cells: connecting structure and function. Histochem Cell Biol. 2008;130:185–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Eltsov M, Maclellan KM, Maeshima K, Frangakis AS, Dubochet J. Analysis of cryo-electron microscopy images does not support the existence of 30-nm chromatin fibers in mitotic chromosomes in situ. Proc Natl Acad Sci U S A. 2008;105:19732–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Salje J, Zuber B, Löwe J. Electron cryomicroscopy of E. coli reveals filament bundles involved in plasmid DNA segregation. Science. 2009;323:509–12.

    Article  CAS  PubMed  Google Scholar 

  46. Zuber B, Chami M, Houssin C, Dubochet J, Griffiths G, Daffé M. Direct visualization of the outer membrane of mycobacteria and corynebacteriain their native state.J. Bacteriology. 2008;190:5672–80.

    Article  CAS  Google Scholar 

  47. Bleck CK, Merz A, Gutierrez MG, Walther P, Dubochet J, Zuber B, Griffiths G. Comparison of different methods for thin section EM analysis of Mycobacterium smegmatis. J Microsc. 2010;237:23–38.

    Article  CAS  PubMed  Google Scholar 

  48. Koning RI, Koster KAJ. Cryo-electron tomography in biology and medicine. Ann Anat. 2009;191:427–45.

    Article  PubMed  Google Scholar 

  49. Gilbert P. Iterative methods for the three dimensional reconstruction of an object from projections. J Theor Biol. 1972;36:105–17.

    Article  CAS  PubMed  Google Scholar 

  50. Jonic S, Sorzano COS, Boisset N. Comparison of single-particle analysis and electron tomography approaches: an overview. J Microsc. 2008;232:562–79.

    Article  CAS  PubMed  Google Scholar 

  51. Koster AJ, Klumperman J. Electron microscopy in cell biology: integrating structure and function. Nat Rev Mol Cell Biol. 2003;4(Suppl):SS6–10.

    Google Scholar 

  52. Garvalov BK, Zuber B, Bouchet-Marquis C, Kudryashev M, Gruska M, Beck M, Leis A, Frischknecht F, Bradke F, Baumeister W, et al. Luminal particles within cellular microtubules.J. Cell Biol. 2006;174:759–65.

    Article  CAS  Google Scholar 

  53. Braet F, Wisse E, Bomans P, Frederik P, Geerts W, Koster A, Soon L, Ringer S. Contribution of high-resolution correlative imaging techniques in the study of the liver sieve in three-dimensions. Microsc Res Tech. 2007;70:230–42.

    Article  PubMed  Google Scholar 

  54. Nickell S, Kofler C, Leis AP, Baumeister W. A visual approach to proteomics. Nat Rev Mol Cell Biol. 2006;7:225–30.

    Article  CAS  PubMed  Google Scholar 

  55. Humbel BM, de Jong MD, Müller WH, Verkleij AJ. Pre-embedding immunolabeling for electron microscopy: an evaluation of permeabilization methods and markers. Microsc Res Tech. 1998;42:43–58.

    Article  CAS  PubMed  Google Scholar 

  56. http://www.olympusmicro.com/

  57. http://www.microscopyu.com/

  58. Denk WJ, Strickler JP, Webb WW. Two-photon laser scanning fluorescence microscopy. Science. 1990;248:73–6.

    Article  CAS  PubMed  Google Scholar 

  59. Zipfel WR, Williams RM, Christie R, et al. Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation. Proc Natl Acad Sci U S A. 2003;100(12):7075–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Konig K, Riemann I. High-resolution multiphoton tomography of human skin with subcellular spatial resolution and picosecond time resolution. J Biomed Opt. 2003;8(3):432–9.

    Article  PubMed  Google Scholar 

  61. Svoboda K, Yasuda R. Principles of two-photon excitation microscopy and its applications to neuroscience. Neuron. 2006 Jun 15;50(6):823–39.

    Article  CAS  PubMed  Google Scholar 

  62. Wang BG, Konig K, Halbhuber KJ. Two-photon microscopy of deep intravital tissues and its merits in clinical research. J Microsc. 2010;238(Pt 1):1–20.

    Article  CAS  PubMed  Google Scholar 

  63. Williams RM, Zipfel WR, Webb WW. Multiphoton microscopy in biological research. Curr Opin Chem Biol. 2001;5(5):603–7.

    Article  CAS  PubMed  Google Scholar 

  64. Helmchen F, Denk W. Deep tissue two-photon microscopy. Nat Methods. 2005;2(12):932–40.

    Article  CAS  PubMed  Google Scholar 

  65. Marcello L, Cavaliere C, Colangelo AM, Bianco MR, Cirillo G, Alberghina L, Papa M. Remodelling of supraspinal neuroglial network in neuropathic pain is featured by a reactive gliosis of the nociceptive amygdala. Eur J Pain. 2013 Jul;17(6):799–810.

    Article  CAS  PubMed  Google Scholar 

  66. Squirrell JM, Wokosin DL, White JG, Bavister BD. Long- term two-photon fluorescence imaging of mammalian embryos without compromising viability. Nat Biotechnol. 1999;17:763–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Maggio N, Cavaliere C, Papa M, Blatt I, Chapman J, Segal M. Thrombin regulation of synaptic transmission: implications for seizure onset. Neurobiol Dis. 2013 Feb;50:171–7.

    Article  CAS  PubMed  Google Scholar 

  68. Campagnola PJ, Loew LM. Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms. Nat Biotechnol. 2003;21(11):1356–60.

    Article  CAS  PubMed  Google Scholar 

  69. Guo Y, Savage HE, Liu F, Schantz SP, Ho PP, Alfano RR. Subsurface tumor progression investigated by non-invasive optical second harmonic tomography. Proc Natl Acad Sci U S A. 1999;96(19):10854–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Masters BR, So PTC. Multi-photon excitation microscopy and confocal microscopy imaging of in vivo human skin: a comparison. Micros Microanal. 1999;5:282–9.

    Article  CAS  Google Scholar 

  71. Masters BR, So PTC, Gratton E. Optical biopsy of in vivo human skin: multiphoton excitation microscopy. Lasers Med Sci. 1998;13:196–203.

    Article  Google Scholar 

  72. Schenke-Layland K, Riemann I, Damour O, Stock UA, Konig K. Two-photon microscopes and in vivo multiphoton tomographs—Powerful diagnostic tools for tissue engineering and drug delivery. Adv Drug Deliv Rev. 2006;58:878–96.

    Article  CAS  PubMed  Google Scholar 

  73. Cirillo G, De Luca D, Papa M. Calcium imaging of living astrocytes in the mouse spinal cord following sensory stimulation. Neural Plast. 2012;2012:425818. doi:10.1155/2012/425817.

    PubMed  PubMed Central  Google Scholar 

  74. Mehta AD, Jung JC, Flusberg BA, Schnitzer MJ. Fiber optic in vivo imaging in the mammalian nervous system. Curr Opin Neurobiol. 2004;14:617–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Llewellyn ME, Barretto RP, Delp SL, Schnitzer MJ. Minimally invasive high-speed imaging of sarcomere contractile dynamics in mice and humans. Nature. 2007;454:784–7.

    Google Scholar 

  76. Wilt BA, Burns LD, Wei Ho ET, Ghosh KK, Mukamel EA, Schnitzer MJ. Advances in light microscopy for neuroscience. Annu Rev Neurosci. 2009;32:435–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Barretto RP, Ko TH, Jung JC, Wang TJ, Capps G, Waters AC, Ziv Y, Attardo A, Recht L, Schnitzer MJ. Time- lapse imaging of disease progression in deep brain areas using fluorescence microendoscopy. 2010.

    Google Scholar 

  78. Flusberg BA, Cocker ED, Piyawattanametha W, Jung JC, Cheung EL, Schnitzer MJ. Fiber-optic fluorescence imaging. Nat Methods. 2005;2:941–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Delaney PM, King RG, Lambert JR, Harris MR. Fibre optic confocal imaging (FOCI) for subsurface microscopy of the colon in vivo. J Anat. 1994;184:157–60.

    PubMed  PubMed Central  Google Scholar 

  80. Kiesslich R, et al. Confocal laser endoscopy for diagnosing intraepithelial neoplasias and colorectal cancer in vivo. Gastroenterology. 2004;127:706–13.

    Article  PubMed  Google Scholar 

  81. Cromie MJ, Sanchez GN, Schnitzer MJ, Delp SL. Sarcomere Lenghts in human extensor carpi radialis brevis measured by microendoscopy. Muscle Nerve. 2013;48(2):286–92.

    Article  PubMed  Google Scholar 

  82. Swindle LD, Thomas SG, Freeman M, Delaney PM. View of normal human skin in vivo as observed using fluorescent fiber-optic confocal microscopic imaging. J Invest Dermatol. 2003;121:706–12.

    Article  CAS  PubMed  Google Scholar 

  83. Blasberg RG. Molecular imaging and cancer. Mol Cancer Ther. 2003;2:335–43.

    CAS  PubMed  Google Scholar 

  84. Grassi R, Cavaliere C, Cozzolino S, Mansi L, Cirillo S, Tedeschi G, Franchi R, Russo P, Cornacchia S, Rotondo A. Small animal imaging facility: new perspectives for the radiologist. Radiol Med. 2009;114:152–67.

    Article  CAS  PubMed  Google Scholar 

  85. Berritto D, Somma F, Landi N, Cavaliere C, Corona M, Russo S, Fulciniti F, Cappabianca S, Rotondo A, Grassi R. Seven-Tesla micro-MRI in early detection of acute arterial ischaemia: evolution of findings in an in vivo rat model. Radiol Med. 2011;116:829–41.

    Article  CAS  PubMed  Google Scholar 

  86. Doubrovin M, Serganova I, Mayer-Kuckuk P, et al. Multimodality in vivo molecular-genetic imaging. Bioconjug Chem. 2004;15:1376–87.

    Article  CAS  PubMed  Google Scholar 

  87. Luker GD, Piwnica-Worms D. Molecular imaging in vivo with PET and SPECT. Acad Radiol. 2001;8:4–14.

    Article  CAS  PubMed  Google Scholar 

  88. Stumpe KD, Urbinelli M, Steinert HC, et al. Whole body positron emission tomography using fluorodeoxyglucose for staging of lymphoma: effectiveness and comparison with computed tomography. Eur J Nucl Med. 1998;25:721–7.

    Article  CAS  PubMed  Google Scholar 

  89. Liang HD, Blomley MJ. The role of ultrasound in molecular imaging. Br J Radiol. 2003;76 suppl 2:S140–50.

    Article  CAS  PubMed  Google Scholar 

  90. Lindner JR. Molecular imaging with contrast ultrasound and targeted microbubbles. J Nucl Cardiol. 2004;11:215–21.

    Article  PubMed  Google Scholar 

  91. Unnikrishnan S, Klibanov AL. Microbubbles as ultrasound contrast agents for molecular imaging: preparation and application. AJR. 2012;199:292–9.

    Article  PubMed  Google Scholar 

  92. Klibanov AL, Rychak JJ, Yang WC, Alikhani S, Li B, Acton S, Lindner JR, Ley K, Kaul S. Targeted ultrasound contrast agent for molecular imaging of inflammation in high-shear flow. Contrast Media Mol Imaging. 2006;1:259–66.

    Article  CAS  PubMed  Google Scholar 

  93. Pace L, Nicolai E, Aiello M, Catalano OA, Salvatore M. Whole-body PET/MRI in oncology: current status and clinical applications. Clin Trans Imaging. 2013;1:31–44.

    Article  Google Scholar 

  94. Rudin M, Weissleder R. Molecular imaging in drug discovery and development. Nat Rev Drug Discov. 2003;2:123–31.

    Article  CAS  PubMed  Google Scholar 

  95. Weissleder R. Molecular imaging: exploring the next frontier. Radiology. 1999;212:609–14.

    Article  CAS  PubMed  Google Scholar 

  96. Klerkx WM, Bax L, Veldhuis WB, Heintz APM, Mali WPTM, Peeters PHM, Moons KGM. Detection of lymph node metastases by gadolinium-enhanced magnetic resonance imaging: systematic review and meta-analysis. J Natl Cancer Inst. 2010;102:244–53.

    Article  PubMed  Google Scholar 

  97. Bulte JWM. In vivo MRI cell tracking: clinical studies. AJR. 2009;193:314–25.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Hwang DW, Youn H, Lee DS. Molecular imaging using PET/MRI particle. Open Nucl Med J. 2010;2:186–91.

    Article  Google Scholar 

  99. Kamaly N, Miller AD. Paramagnetic liposome nanoparticles for cellular and tumour imaging. Int J Mol Sci. 2010;11:1759–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Tirino V, Desiderio V, d’Aquino R, De Francesco F, Pirozzi G, Graziano A, Galderisi U, Cavaliere C, De Rosa A, Papaccio G, Giordano A. Detection and characterization of CD133+ cancer stem cells in human solid tumours. PLoS One. 2008;3(10), e3469.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Brindle KM. Molecular imaging using magnetic resonance: new tools for the development of tumour therapy. Br J Radiol. 2003;76 suppl 2:S111–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Cavaliere .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cavaliere, C. et al. (2016). Advanced Imaging Techniques. In: Sacerdoti, F., Giordano, A., Cavaliere, C. (eds) Advanced Imaging Techniques in Clinical Pathology. Current Clinical Pathology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3469-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3469-0_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3467-6

  • Online ISBN: 978-1-4939-3469-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics