Skip to main content

Part of the book series: Physiology in Health and Disease ((PIHD))

  • 1498 Accesses

Abstract

Secretory diarrhea (SD) remains a major cause of morbidity and mortality globally particularly among infants and children. Enterotoxin-mediated diarrhea due to cholera, Escherichia coli (E. coli), and rotavirus remain major causes of SD in developing countries, while genetic diseases that produce defects in intestinal ion transporters and motor proteins are increasingly implicated in diarrheal diseases in developed countries. In recent years, significant advances have been made in understanding various factors that contribute to the underlying pathogenesis of SD. These advances are the result of research progress in the fields of genetics, cell biology, and physiology and animal models that have culminated in the development of new therapeutic agents for treating SD. The major advances in pathophysiology and treatment of enterotoxin and genetic causes of SD in childhood will be reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abely M, Hankard GF, Hugot JP et al (1998) Intractable infant diarrhea with epithelial dysplasia associated with polymalformation. J Pediatr Gastroenterol Nutr 27(3):348–352

    Article  CAS  PubMed  Google Scholar 

  • Achler C, Filmer D, Merte C et al (1989) Role of microtubules in polarized delivery of apical membrane proteins to the brush border of the intestinal epithelium. J Cell Biol 109(1):179–189

    Article  CAS  PubMed  Google Scholar 

  • Aichbichler BW, Zerr CH, Santa Ana CA et al (1997) Proton-pump inhibition of gastric chloride secretion in congenital chloridorrhea. N Engl J Med 336(2):106–109

    Article  CAS  PubMed  Google Scholar 

  • Aimoto S, Takao T, Shimonishi Y et al (1982) Amino-acid sequence of a heat-stable enterotoxin produced by human enterotoxigenic Escherichia coli. Eur J Biochem 129(2):257–263

    Article  CAS  PubMed  Google Scholar 

  • Aimoto S, Watanabe H, Ikemura H et al (1983) Chemical synthesis of a highly potent and heat-stable analog of an enterotoxin produced by a human strain of enterotoxigenic Escherichia coli. Biochem Biophys Res Commun 112(1):320–326

    Article  CAS  PubMed  Google Scholar 

  • Alderete JF, Robertson DC (1978) Purification and chemical characterization of the heat-stable enterotoxin produced by porcine strains of enterotoxigenic Escherichia coli. Infect Immun 19(3):1021–1030

    CAS  PubMed Central  PubMed  Google Scholar 

  • Al-Mayouf SM, Alswaied N, Alkuraya FS et al (2009) Tufting enteropathy and chronic arthritis: a newly recognized association with a novel EpCAM gene mutation. J Pediatr Gastroenterol Nutr 49(5):642–644

    Article  PubMed  Google Scholar 

  • Ameen N, Apodaca G (2007) Defective CFTR apical endocytosis and enterocyte brush border in myosin VI-deficient mice. Traffic 8(8):998–1006

    Article  CAS  PubMed  Google Scholar 

  • Ameen NA, Salas PJ (2000) Microvillus inclusion disease: a genetic defect affecting apical membrane protein traffic in intestinal epithelium. Traffic 1(1):76–83

    Article  CAS  PubMed  Google Scholar 

  • Ameen NA, Ardito T, Kashgarian M et al (1995) A unique subset of rat and human intestinal villus cells express the cystic fibrosis transmembrane conductance regulator. Gastroenterology 108(4):1016–1023

    Article  CAS  PubMed  Google Scholar 

  • Ameen NA, Martensson B, Bourguinon L et al (1999) CFTR channel insertion to the apical surface in rat duodenal villus epithelial cells is upregulated by VIP in vivo. J Cell Sci 112(Pt 6):887–894

    CAS  PubMed  Google Scholar 

  • Ameen NA, van Donselaar E, Posthuma G et al (2000) Subcellular distribution of CFTR in rat intestine supports a physiologic role for CFTR regulation by vesicle traffic. Histochem Cell Biol 114(3):219–228

    CAS  PubMed  Google Scholar 

  • Ameen N, Silvis M, Bradbury NA (2007) Endocytic trafficking of CFTR in health and disease. J Cyst Fibros 6(1):1–14

    Article  CAS  PubMed  Google Scholar 

  • Barrett KE (2000) New insights into the pathogenesis of intestinal dysfunction: secretory diarrhea and cystic fibrosis. World J Gastroenterol 6(4):470–474

    PubMed Central  PubMed  Google Scholar 

  • Barrett KE, Keely SJ (2000) Chloride secretion by the intestinal epithelium: molecular basis and regulatory aspects. Annu Rev Physiol 62:535–572

    Article  CAS  PubMed  Google Scholar 

  • Baum M, Martin MG, Booth IW et al (2011) Nucleotide sequence of the Na+/H+ exchanger-8 in patients with congenital sodium diarrhea. J Pediatr Gastroenterol Nutr 53(5):474–477

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baxter PS, Dickson JA, Variend S et al (1988) Intestinal disease in cystic fibrosis. Arch Dis Child 63(12):1496–1497

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bernardi KM, Forster ML, Lencer WI et al (2008) Derlin-1 facilitates the retro-translocation of cholera toxin. Mol Biol Cell 19(3):877–884

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bijlsma PB, Kiliaan AJ, Scholten G et al (2000) Increased paracellular macromolecular transport and subnormal glucose uptake in duodenal biopsies of patients with microvillus inclusion disease. Comparisons to other chronic diarrhea patients and to nondiarrhea patients. Ann NY Acad Sci 915:267–269

    Article  CAS  PubMed  Google Scholar 

  • Binder HJ (2012) Intestinal fluid and electrolyte movement. In: Boron WF, Boulpaep EL (eds) Medical physiology a cellular and molecular approach, updated 2nd edn, vol 1. Saunders Elsevier, Philadelphia, PA, p 933

    Google Scholar 

  • Binder HJ, Reuben A (2012) Nutrient digestion and absorption. In: Boron WF, Boulpaep EL (eds) Medical physiology a cellular and molecular approach, updated 2nd edn, vol 1. Saunders Elsevier, Philadelphia, PA, p 949

    Google Scholar 

  • Bird LM, Sivagnanam M, Taylor S et al (2007) A new syndrome of tufting enteropathy and choanal atresia, with ophthalmologic, hematologic and hair abnormalities. Clin Dysmorphol 16(4):211–221

    Article  PubMed  Google Scholar 

  • Bohles N, Busch K, Hensel M (2014) Vaccines against human diarrheal pathogens: current status and perspectives. Hum Vaccin Immunother 10(6)

    Google Scholar 

  • Booth IW, Stange G, Murer H et al (1985) Defective jejunal brush-border Na+/H+ exchange: a cause of congenital secretory diarrhoea. Lancet 1(8437):1066–1069

    Article  CAS  PubMed  Google Scholar 

  • Bunn SK, Beath SV, McKeirnan PJ et al (2000) Treatment of microvillus inclusion disease by intestinal transplantation. J Pediatr Gastroenterol Nutr 31(2):176–180

    Article  CAS  PubMed  Google Scholar 

  • Burgess MN, Bywater RJ, Cowley CM et al (1978) Biological evaluation of a methanol-soluble, heat-stable Escherichia coli enterotoxin in infant mice, pigs, rabbits, and calves. Infect Immun 21(2):526–531

    CAS  PubMed Central  PubMed  Google Scholar 

  • Buss F, Arden SD, Lindsay M et al (2001) Myosin VI isoform localized to clathrin-coated vesicles with a role in clathrin-mediated endocytosis. EMBO J 20(14):3676–3684

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Buss F, Spudich G, Kendrick-Jones J (2004) Myosin VI: cellular functions and motor properties. Annu Rev Cell Dev Biol 20:649–676

    Article  CAS  PubMed  Google Scholar 

  • Camilleri M, Nullens S, Nelsen T (2012) Enteroendocrine and neuronal mechanisms in pathophysiology of acute infectious diarrhea. Dig Dis Sci 57(1):19–27

    Article  CAS  PubMed  Google Scholar 

  • Canani RB, Terrin G (2011) Recent progress in congenital diarrheal disorders. Curr Gastroenterol Rep 13(3):257–264

    Article  PubMed  Google Scholar 

  • Canani RB, Terrin G, Cirillo P et al (2004) Butyrate as an effective treatment of congenital chloride diarrhea. Gastroenterology 127(2):630–634

    Article  PubMed  Google Scholar 

  • Canani RB, Terrin G, Elce A et al (2013) Genotype-dependency of butyrate efficacy in children with congenital chloride diarrhea. Orphanet J Rare Dis 8:194

    Article  PubMed Central  PubMed  Google Scholar 

  • Carruthers L, Phillips AD, Dourmashkin R et al (1985) Biochemical abnormality in brush border membrane protein of a patient with congenital microvillus atrophy. J Pediatr Gastroenterol Nutr 4(6):902–907

    Article  CAS  PubMed  Google Scholar 

  • Carruthers L, Dourmashkin R, Phillips A (1986) Disorders of the cytoskeleton of the enterocyte. Clin Gastroenterol 15(1):105–120

    CAS  PubMed  Google Scholar 

  • Chao AC, de Sauvage FJ, Dong YJ et al (1994) Activation of intestinal CFTR Cl- channel by heat-stable enterotoxin and guanylin via cAMP-dependent protein kinase. EMBO J 13(5):1065–1072

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chinkers M, Garbers DL, Chang MS et al (1989) A membrane form of guanylate cyclase is an atrial natriuretic peptide receptor. Nature 338(6210):78–83

    Article  CAS  PubMed  Google Scholar 

  • Choi M, Scholl UI, Ji W et al (2009) Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc Natl Acad Sci U S A 106(45):19096–19101

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cihil KM, Ellinger P, Fellows A et al (2012) Disabled-2 protein facilitates assembly polypeptide-2-independent recruitment of cystic fibrosis transmembrane conductance regulator to endocytic vesicles in polarized human airway epithelial cells. J Biol Chem 287(18):15087–15099

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cohen MB, Guarino A, Shukla R et al (1988) Age-related differences in receptors for Escherichia coli heat-stable enterotoxin in the small and large intestine of children. Gastroenterology 94(2):367–373

    Article  CAS  PubMed  Google Scholar 

  • Cohen MB, Thompson MR, Giannella RA (1989) Differences in jejunal and ileal response to E. coli enterotoxin: possible mechanisms. Am J Physiol Gastrointest Liver Physiol 257(1):G118–G123

    CAS  Google Scholar 

  • Cohen MB, Mann EA, Lau C et al (1992) A gradient in expression of the Escherichia coli heat-stable enterotoxin receptor exists along the villus-to-crypt axis of rat small intestine. Biochem Biophys Res Commun 186(1):483–490

    Article  CAS  PubMed  Google Scholar 

  • Collaco A, Jakab R, Hegan P et al (2010) Alpha-AP-2 directs myosin VI-dependent endocytosis of cystic fibrosis transmembrane conductance regulator chloride channels in the intestine. J Biol Chem 285(22):17177–17187

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cottreau J, Tucker A, Crutchley R et al (2012) Crofelemer for the treatment of secretory diarrhea. Expert Rev Gastroenterol Hepatol 6(1):17–23

    Article  CAS  PubMed  Google Scholar 

  • Croft NM, Howatson AG, Ling SC et al (2000) Microvillous inclusion disease: an evolving condition. J Pediatr Gastroenterol Nutr 31(2):185–189

    Article  CAS  PubMed  Google Scholar 

  • Crutchley RD, Miller J, Garey KW (2010) Crofelemer, a novel agent for treatment of secretory diarrhea. Ann Pharmacother 44(5):878–884

    Article  CAS  PubMed  Google Scholar 

  • Currie MG, Fok KF, Kato J et al (1992) Guanylin: an endogenous activator of intestinal guanylate cyclase. Proc Natl Acad Sci U S A 89(3):947–951

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cutz E, Rhoads JM, Drumm B et al (1989) Microvillus inclusion disease: an inherited defect of brush-border assembly and differentiation. N Engl J Med 320(10):646–651

    Article  CAS  PubMed  Google Scholar 

  • Darrow DC (1945) Congenital alkalosis with diarrhea. J Pediatr 26:519–532

    Article  Google Scholar 

  • Davidson GP, Cutz E, Hamilton JR et al (1978) Familial enteropathy: a syndrome of protracted diarrhea from birth, failure to thrive, and hypoplastic villus atrophy. Gastroenterology 75(5):783–790

    CAS  PubMed  Google Scholar 

  • De Jonge HR (1975a) The localization of guanylate cyclase in rat small intestinal epithelium. FEBS Lett 53(2):237–242

    Article  PubMed  Google Scholar 

  • De Jonge HR (1975b) The response of small intestinal villous and crypt epithelium to choleratoxin in rat and guinea pig. Evidence against a specific role of the crypt cells in choleragen-induced secretion. Biochem Biophys Acta 381(1):128–143

    Article  PubMed  Google Scholar 

  • de Sauvage FJ, Keshav S, Kuang WJ et al (1992) Precursor structure, expression, and tissue distribution of human guanylin. Proc Natl Acad Sci U S A 89(19):9089–9093

    Article  PubMed Central  PubMed  Google Scholar 

  • Dhekne HS, Hsiao NH, Roelofs P et al (2014) Myosin Vb and Rab11a regulate phosphorylation of ezrin in enterocytes. J Cell Sci 127(Pt 5):1007–1017

    Article  CAS  PubMed  Google Scholar 

  • Dong W, Chen X, Chen P et al (2012) Inactivation of MYO5B promotes invasion and motility in gastric cancer cells. Dig Dis Sci 57(5):1247–1252

    Article  CAS  PubMed  Google Scholar 

  • Donowitz M, Welsh MJ (1986) Ca2+ and cyclic AMP in regulation of intestinal Na, K and Cl transport. Annu Rev Physiol 48:135–150

    Article  CAS  PubMed  Google Scholar 

  • Donowitz M, Alpers DH, Binder HJ et al (2012) Translational approaches for pharmacotherapy development for acute diarrhea. Gastroenterology 142(3):e1–e9

    Article  PubMed  Google Scholar 

  • Eggermont E (1996) Gastrointestinal manifestations in cystic fibrosis. Eur J Gastroenterol Hepatol 8(8):731–738

    CAS  PubMed  Google Scholar 

  • Ellinger A, Pavelka M (1986) Colchicine-induced tubular, vesicular and cisternal organelle aggregates in absorptive cells of the small intestine of the rat. II. Endocytosis studies. Biol Cell 58(1):31–41

    Article  CAS  PubMed  Google Scholar 

  • El-Matary W, Dalzell AM, Kokai G et al (2007) Tufting enteropathy and skeletal dysplasia: is there a link? Eur J Pediatr 166(3):265–268

    Article  PubMed  Google Scholar 

  • Farthing MJ (1994) Oral rehydration therapy. Pharmacol Ther 64(3):477–492

    Article  CAS  PubMed  Google Scholar 

  • Farthing MJ (2001) Treatment of gastrointestinal viruses. Novartis Found Symp 238:289–300

    Article  CAS  PubMed  Google Scholar 

  • Fell JM, Miller MP, Finkel Y et al (1992) Congenital sodium diarrhea with a partial defect in jejunal brush border membrane sodium transport, normal rectal transport, and resolving diarrhea. J Pediatr Gastroenterol Nutr 15(2):112–116

    Article  CAS  PubMed  Google Scholar 

  • Field M, Semrad CE (1993) Toxigenic diarrheas, congenital diarrheas, and cystic fibrosis: disorders of intestinal ion transport. Annu Rev Physiol 55:631–655

    Article  CAS  PubMed  Google Scholar 

  • Field M, Graf LH Jr, Laird WJ et al (1978) Heat-stable enterotoxin of Escherichia coli: in vitro effects on guanylate cyclase activity, cyclic GMP concentration, and ion transport in small intestine. Proc Natl Acad Sci U S A 75(6):2800–2804

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fish EM, Molitoris BA (1994) Alterations in epithelial polarity and the pathogenesis of disease states. N Engl J Med 330(22):1580–1588

    Article  CAS  PubMed  Google Scholar 

  • Gabriel SE, Brigman KN, Koller BH et al (1994) Cystic fibrosis heterozygote resistance to cholera toxin in the cystic fibrosis mouse model. Science 266(5182):107–109

    Article  CAS  PubMed  Google Scholar 

  • Gamble JL, Fahey KR, Appleton J et al (1945) Congenital alkalosis with diarrhea. J Pediatr 26(6):509–518

    Article  Google Scholar 

  • Gariepy J, Schoolnik GK (1986) Design of a photoreactive analogue of the Escherichia coli heat-stable enterotoxin STIb: use in identifying its receptor on rat brush border membranes. Proc Natl Acad Sci U S A 83(2):483–487

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gariepy J, Lane A, Frayman F et al (1986) Structure of the toxic domain of the Escherichia coli heat-stable enterotoxin ST I. Biochemistry 25(24):7854–7866

    Article  CAS  PubMed  Google Scholar 

  • Gelfond D, Ma C, Semler J et al (2013) Intestinal pH and gastrointestinal transit profiles in cystic fibrosis patients measured by wireless motility capsule. Dig Dis Sci 58(8):2275–2281

    Article  CAS  PubMed  Google Scholar 

  • Giannella RA, Luttrell M, Thompson M (1983) Binding of Escherichia coli heat-stable enterotoxin to receptors on rat intestinal cells. Am J Physiol Gastrointest Liver Physiol 8(4):G492–G498

    Google Scholar 

  • Gill DM, Clements JD, Robertson DC et al (1981) Subunit number and arrangement in Escherichia coli heat-labile enterotoxin. Infect Immun 33(3):677–682

    CAS  PubMed Central  PubMed  Google Scholar 

  • Golachowska MR, van Dael CM, Keuning H et al (2012) MYO5B mutations in patients with microvillus inclusion disease presenting with transient renal Fanconi syndrome. J Pediatr Gastroenterol Nutr 54(4):491–498

    Article  CAS  PubMed  Google Scholar 

  • Golin-Bisello F, Bradbury N, Ameen N (2005) STa and cGMP stimulate CFTR translocation to the surface of villus enterocytes in rat jejunum and is regulated by protein kinase G. Am J Physiol Cell Physiol 289(3):C708–C716

    Article  CAS  PubMed  Google Scholar 

  • Goulet O, Kedinger M, Brousse N et al (1995) Intractable diarrhea of infancy with epithelial and basement membrane abnormalities. J Pediatr 127(2):212–219

    Article  CAS  PubMed  Google Scholar 

  • Gray J (2011) Rotavirus vaccines: safety, efficacy and public health impact. J Intern Med 270(3):206–214

    Article  CAS  PubMed  Google Scholar 

  • Guerrant RL, Hughes JM, Chang B et al (1980) Activation of intestinal guanylate cyclase by heat-stable enterotoxin of Escherichia coli: Studies of tissue specificity, potential receptors, and intermediates. J Infect Dis 142(2):220–228

    Article  CAS  PubMed  Google Scholar 

  • Guggino WB, Stanton BA (2006) New insights into cystic fibrosis: molecular switches that regulate CFTR. Nat Rev Mol Cell Biol 7(6):426–436

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa M, Hidaka Y, Matsumoto Y et al (1999) Determination of the binding site on the extracellular domain of guanylyl cyclase C to heat-stable enterotoxin. J Biol Chem 274(44):31713–31718

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa M, Matsumoto-Ishikawa Y, Hijikata A et al (2005) Disulfide linkages and a three-dimensional structure model of the extracellular ligand-binding domain of guanylyl cyclase C. Protein J 24(5):315–325

    Article  CAS  PubMed  Google Scholar 

  • Hasson T (2003) Myosin VI: two distinct roles in endocytosis. J Cell Sci 116(Pt 17):3453–3461

    Article  CAS  PubMed  Google Scholar 

  • Hazes B, Read RJ (1997) Accumulating evidence suggests that several AB-toxins subvert the endoplasmic reticulum-associated protein degradation pathway to enter target cells. Biochemistry 36(37):11051–11054

    Article  CAS  PubMed  Google Scholar 

  • Heinz-Erian P, Muller T, Krabichler B et al (2009) Mutations in SPINT2 cause a syndromic form of congenital sodium diarrhea. Am J Hum Genet 84(2):188–196

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hoglund P, Sistonen P, Norio R et al (1995) Fine mapping of the congenital chloride diarrhea gene by linkage disequilibrium. Am J Hum Genet 57(1):95–102

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hoglund P, Haila S, Scherer SW et al (1996a) Positional candidate genes for congenital chloride diarrhea suggested by high-resolution physical mapping in chromosome region 7q31. Genome Res 6(3):202–210

    Article  CAS  PubMed  Google Scholar 

  • Hoglund P, Haila S, Socha J et al (1996b) Mutations of the Down-regulated in adenoma (DRA) gene cause congenital chloride diarrhoea. Nat Genet 14(3):316–319

    Article  CAS  PubMed  Google Scholar 

  • Holmberg C (1978) Electrolyte economy and its hormonal regulation in congenital chloride diarrhea. Pediatr Res 12(2):82–86

    Article  CAS  PubMed  Google Scholar 

  • Holmberg C, Perheentupa J (1985) Congenital Na+ diarrhea: a new type of secretory diarrhea. J Pediatr 106(1):56–61

    Article  CAS  PubMed  Google Scholar 

  • Holmberg C, Perheentupa J, Launiala K (1975) Colonic electrolyte transport in health and in congenital chloride diarrhea. J Clin Invest 56(2):302–310

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jakab RL, Collaco AM, Ameen NA (2011) Physiological relevance of cell-specific distribution patterns of CFTR, NKCC1, NBCe1, and NHE3 along the crypt-villus axis in the intestine. Am J Physiol Gastrointest Liver Physiol 300(1):G82–G98

    Article  CAS  PubMed  Google Scholar 

  • Jakab RL, Collaco AM, Ameen NA (2012) Cell-specific effects of luminal acid, bicarbonate, cAMP, and carbachol on transporter trafficking in the intestine. Am J Physiol Gastrointest Liver Physiol 303(8):G937–G950

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jakab RL, Collaco AM, Ameen NA (2013) Characterization of CFTR High Expresser cells in the intestine. Am J Physiol Gastrointest Liver Physiol 305(6):G453–G465

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Joo NS, London RM, Kim HD et al (1998) Regulation of intestinal Cl- and HCO3 - secretion by uroguanylin. Am J Physiol Gastrointest Liver Physiol 274(4 Pt 1):G633–G644

    CAS  Google Scholar 

  • Keller KM, Wirth S, Baumann W et al (1990) Defective jejunal brush border membrane sodium/proton exchange in association with lethal familial protracted diarrhoea. Gut 31(10):1156–1158

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kelly M, Trudel S, Brouillard F et al (2010) Cystic fibrosis transmembrane regulator inhibitors CFTR(inh)-172 and GlyH-101 target mitochondrial functions, independently of chloride channel inhibition. J Pharmacol Exp Ther 333(1):60–69

    Article  CAS  PubMed  Google Scholar 

  • Kere J, Sistonen P, Holmberg C et al (1993) The gene for congenital chloride diarrhea maps close to but is distinct from the gene for cystic fibrosis transmembrane conductance regulator. Proc Natl Acad Sci U S A 90(22):10686–10689

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kere J, Lohi H, Hoglund P (1999) Genetic disorders of membrane transport. III. Congenital chloride diarrhea. Am J Physiol Gastrointest Liver Physiol 276(1):G7–G13

    CAS  Google Scholar 

  • Kirkham M, Fujita A, Chadda R et al (2005) Ultrastructural identification of uncoated caveolin-independent early endocytic vehicles. J Cell Biol 168(3):465–476

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ko SB, Shcheynikov N, Choi JY et al (2002) A molecular mechanism for aberrant CFTR-dependent HCO3 - transport in cystic fibrosis. EMBO J 21(21):5662–5672

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kopic S, Geibel JP (2010) Toxin mediated diarrhea in the 21 century: the pathophysiology of intestinal ion transport in the course of ETEC. V. Cholerae and rotavirus infection. Toxins 2(8):2132–2157

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Krause WJ, Cullingford GL, Freeman RH et al (1994) Distribution of heat-stable enterotoxin/guanylin receptors in the intestinal tract of man and other mammals. J Anat 184(Pt 2):407–417

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kravtsov DV, Ameen NA (2013) Molecular motors and apical CFTR traffic in epithelia. Int J Mol Sci 14(5):9628–9642

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kravtsov DV, Caputo C, Collaco A et al (2012) Myosin Ia is required for CFTR brush border membrane trafficking and ion transport in the mouse small intestine. Traffic 13(8):1072–1082

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kravtsov D, Mashukova A, Forteza R et al (2014) Myosin 5b loss of function leads to defects in polarized signalling: implication for microvillus inclusion disease pathogenesis and treatment. Am J Physiol Gastrointest Liver Physiol 307(10):G992–G1001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Krzemien G, Szmigielska A, Jankowska K et al (2013) Congenital chloride diarrhea mimicking meconium ileus in newborn. Med Wieku Rozwoj 17(4):320–323

    PubMed  Google Scholar 

  • Lauber T, Tidten N, Matecko I et al (2009) Design and characterization of a soluble fragment of the extracellular ligand-binding domain of the peptide hormone receptor guanylyl cyclase-C. Protein Eng Des Sel 22(1):1–7

    Article  CAS  PubMed  Google Scholar 

  • Lee CM, Chang PP, Tsai SC et al (1991) Activation of Escherichia coli heat-labile enterotoxins by native and recombinant adenosine diphosphate-ribosylation factors, 20-kD guanine nucleotide-binding proteins. J Clin Invest 87(5):1780–1786

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lorenz JN, Nieman M, Sabo J et al (2003) Uroguanylin knockout mice have increased blood pressure and impaired natriuretic response to enteral NaCl load. J Clin Invest 112(8):1244–1254

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lorrot M, Vasseur M (2007) How do the rotavirus NSP4 and bacterial enterotoxins lead differently to diarrhea? Virol J 4:31

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lorrot M, Benhamadouche-Casari H, Vasseur M (2006) Mechanisms of net chloride secretion during rotavirus diarrhea in young rabbits: do intestinal villi secrete chloride? Cell Physiol Biochem 18(1–3):103–112

    Article  CAS  PubMed  Google Scholar 

  • Lowe DG, Chang MS, Hellmiss R et al (1989) Human atrial natriuretic peptide receptor defines a new paradigm for second messenger signal transduction. EMBO J 8(5):1377–1384

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ma T, Thiagarajah JR, Yang H et al (2002) Thiazolidinone CFTR inhibitor identified by high-throughput screening blocks cholera toxin-induced intestinal fluid secretion. J Clin Invest 110(11):1651–1658

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Madden DR, Swiatecka-Urban A (2012) Tissue-specific control of CFTR endocytosis by Dab2: cargo recruitment as a therapeutic target. Commun Integr Biol 5(5):473–476

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Majoul I, Sohn K, Wieland FT et al (1998) KDEL receptor (Erd2p)-mediated retrograde transport of the cholera toxin A subunit from the Golgi involves COPI, p23, and the COOH terminus of Erd2p. J Cell Biol 143(3):601–612

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Makela S, Kere J, Holmberg C et al (2002) SLC26A3 mutations in congenital chloride diarrhea. Hum Mutat 20(6):425–438

    Article  CAS  PubMed  Google Scholar 

  • Mann EA, Jump ML, Wu J et al (1997) Mice lacking the guanylyl cyclase C receptor are resistant to STa-induced intestinal secretion. Biochem Biophys Res Commun 239(2):463–466

    Article  CAS  PubMed  Google Scholar 

  • Massey S, Banerjee T, Pande AH et al (2009) Stabilization of the tertiary structure of the cholera toxin A1 subunit inhibits toxin dislocation and cellular intoxication. J Mol Biol 393(5):1083–1096

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Massol RH, Larsen JE, Fujinaga Y et al (2004) Cholera toxin toxicity does not require functional Arf6- and dynamin-dependent endocytic pathways. Mol Biol Cell 15(8):3631–3641

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McReynolds EW, Roy S III, Etteldorf JN (1974) Congenital chloride diarrhea. Am J Dis Child 127(4):566–570

    CAS  PubMed  Google Scholar 

  • Melvin JE, Park K, Richardson L et al (1999) Mouse down-regulated in adenoma (DRA) is an intestinal Cl-/HCO3 - exchanger and is up-regulated in colon of mice lacking the NHE3 Na+/H+ exchanger. J Biol Chem 274(32):22855–22861

    Article  CAS  PubMed  Google Scholar 

  • Merritt EA, Sarfaty S, Van den Akker F et al (1994) Crystal structure of cholera toxin B-pentamer bound to receptor G(M1) pentasaccharide. Protein Sci 3(2):166–175

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Michail S, Collins JF, Xu H et al (1998) Abnormal expression of brush-border membrane transporters in the duodenal mucosa of two patients with microvillus inclusion disease. J Pediatr Gastroenterol Nutr 27(5):536–542

    Article  CAS  PubMed  Google Scholar 

  • Morris SM, Arden SD, Roberts RC et al (2002) Myosin VI binds to and localises with Dab2, potentially linking receptor-mediated endocytosis and the actin cytoskeleton. Traffic 3(5):331–341

    Article  CAS  PubMed  Google Scholar 

  • Moseley SL, Hardy JW, Hug MI et al (1983) Isolation and nucleotide sequence determination of a gene encoding a heat-stable enterotoxin of Escherichia coli. Infect Immun 39(3):1167–1174

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moss J, Richardson SH (1978) Activation of adenylate cyclase by heat-labile Escherichia coli enterotoxin. Evidence for ADP-ribosyltransferase activity similar to that of choleragen. J Clin Invest 62(2):281–285

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Muanprasat C, Sonawane ND, Salinas D et al (2004) Discovery of glycine hydrazide pore-occluding CFTR inhibitors: mechanism, structure-activity analysis, and in vivo efficacy. J Gen Physiol 124(2):125–137

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mueller JL, McGeough MD, Pena CA et al (2014) Functional consequences of EpCam mutation in mice and men. Am J Physiol Gastrointest Liver Physiol 306(4):G278–G288

    Article  CAS  PubMed  Google Scholar 

  • Muller T, Wijmenga C, Phillips AD et al (2000) Congenital sodium diarrhea is an autosomal recessive disorder of sodium/proton exchange but unrelated to known candidate genes. Gastroenterology 119(6):1506–1513

    Article  CAS  PubMed  Google Scholar 

  • Muller T, Hess MW, Schiefermeier N et al (2008) MYO5B mutations cause microvillus inclusion disease and disrupt epithelial cell polarity. Nat Genet 40(10):1163–1165

    Article  PubMed  CAS  Google Scholar 

  • Nakazato M (2001) Guanylin family: new intestinal peptides regulating electrolyte and water homeostasis. J Gastroenterol 36(4):219–225

    Article  CAS  PubMed  Google Scholar 

  • Navaneethan U, Giannella RA (2008) Mechanisms of infectious diarrhea. Nat Clin Pract Gastroenterol Hepatol 5(11):637–647

    Article  PubMed  Google Scholar 

  • Oliva MM, Perman JA, Saavedra JM et al (1994) Successful intestinal transplantation for microvillus inclusion disease. Gastroenterology 106(3):771–774

    Article  CAS  PubMed  Google Scholar 

  • Ousingsawat J, Mirza M, Tian Y et al (2011) Rotavirus toxin NSP4 induces diarrhea by activation of TMEM16A and inhibition of Na+ absorption. Pflugers Arch 461(5):579–589

    Article  CAS  PubMed  Google Scholar 

  • Pande AH, Scaglione P, Taylor M et al (2007) Conformational instability of the cholera toxin A1 polypeptide. J Mol Biol 374(4):1114–1128

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Parton RG (1994) Ultrastructural localization of gangliosides; GM1 is concentrated in caveolae. J Histochem Cytochem 42(2):155–166

    Article  CAS  PubMed  Google Scholar 

  • Patey N, Scoazec JY, Cuenod-Jabri B et al (1997) Distribution of cell adhesion molecules in infants with intestinal epithelial dysplasia (tufting enteropathy). Gastroenterology 113(3):833–843

    Article  CAS  PubMed  Google Scholar 

  • Pedemonte N, Galietta LJ (2014) Structure and function of TMEM16 proteins (anoctamins). Physiol Rev 94(2):419–459

    Article  CAS  PubMed  Google Scholar 

  • Pelkmans L, Burli T, Zerial M et al (2004) Caveolin-stabilized membrane domains as multifunctional transport and sorting devices in endocytic membrane traffic. Cell 118(6):767–780

    Article  CAS  PubMed  Google Scholar 

  • Pfeifer A, Aszodi A, Seidler U et al (1996) Intestinal secretory defects and dwarfism in mice lacking cGMP-dependent protein kinase II. Science 274(5295):2082–2086

    Article  CAS  PubMed  Google Scholar 

  • Phillips AD, Schmitz J (1992) Familial microvillous atrophy: a clinicopathological survey of 23 cases. J Pediatr Gastroenterol Nutr 14(4):380–396

    Article  CAS  PubMed  Google Scholar 

  • Phillips AD, Jenkins P, Raafat F et al (1985) Congenital microvillous atrophy: specific diagnostic features. Arch Dis Child 60(2):135–140

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pohl JF, Shub MD, Trevelline EE et al (1999) A cluster of microvillous inclusion disease in the Navajo population. J Pediatr 134(1):103–106

    Article  CAS  PubMed  Google Scholar 

  • Pratha VS, Hogan DL, Martensson BA et al (2000) Identification of transport abnormalities in duodenal mucosa and duodenal enterocytes from patients with cystic fibrosis. Gastroenterology 118(6):1051–1060

    Article  CAS  PubMed  Google Scholar 

  • Randak C, Langnas AN, Kaufman SS et al (1998) Pretransplant management and small bowel-liver transplantation in an infant with microvillus inclusion disease. J Pediatr Gastroenterol Nutr 27(3):333–337

    Article  CAS  PubMed  Google Scholar 

  • Reifen RM, Cutz E, Griffiths AM et al (1994) Tufting enteropathy: a newly recognized clinicopathological entity associated with refractory diarrhea in infants. J Pediatr Gastroenterol Nutr 18(3):379–385

    Article  CAS  PubMed  Google Scholar 

  • Reinshagen K, Naim HY, Zimmer KP (2002) Autophagocytosis of the apical membrane in microvillus inclusion disease. Gut 51(4):514–521

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rhoads JM, Vogler RC, Lacey SR et al (1991) Microvillus inclusion disease. In vitro jejunal electrolyte transport. Gastroenterology 100(3):811–817

    Article  CAS  PubMed  Google Scholar 

  • Richards AA, Stang E, Pepperkok R et al (2002) Inhibitors of COP-mediated transport and cholera toxin action inhibit simian virus 40 infection. Mol Biol Cell 13(5):1750–1764

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Riordan JR, Rommens JM, Kerem B et al (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245(4922):1066–1073

    Article  CAS  PubMed  Google Scholar 

  • Roberts R, Lister I, Schmitz S et al (2004) Myosin VI: cellular functions and motor properties. Philos Trans R Soc Lond B Biol Sci 359(1452):1931–1944

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rodighiero C, Aman AT, Kenny MJ et al (1999) Structural basis for the differential toxicity of cholera toxin and Escherichia coli heat-labile enterotoxin: construction of hybrid toxins identifies the A2-domain as the determinant of differential toxicity. J Biol Chem 274(7):3962–3969

    Article  CAS  PubMed  Google Scholar 

  • Rodighiero C, Tsai B, Rapoport TA et al (2002) Role of ubiquitination in retro-translocation of cholera toxin and escape of cytosolic degradation. EMBO Rep 3(12):1222–1227

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rodriguez OC, Cheney RE (2002) Human myosin-Vc is a novel class V myosin expressed in epithelial cells. J Cell Sci 115(Pt 5):991–1004

    CAS  PubMed  Google Scholar 

  • Rowland AF, Fazakerley DJ, James DE (2011) Mapping insulin/GLUT4 circuitry. Traffic 12(6):672–681

    Article  CAS  PubMed  Google Scholar 

  • Ruemmele FM, Muller T, Schiefermeier N et al (2010) Loss-of-function of MYO5B is the main cause of microvillus inclusion disease: 15 novel mutations and a CaCo-2 RNAi cell model. Hum Mutat 31(5):544–551

    Article  CAS  PubMed  Google Scholar 

  • Salomon J, Goulet O, Canioni D et al (2014) Genetic characterization of congenital tufting enteropathy: epcam associated phenotype and involvement of SPINT2 in the syndromic form. Hum Genet 133(3):299–310

    Article  CAS  PubMed  Google Scholar 

  • Sato T, Mushiake S, Kato Y et al (2007) The Rab8 GTPase regulates apical protein localization in intestinal cells. Nature 448(7151):366–369

    Article  CAS  PubMed  Google Scholar 

  • Schulz S, Green CK, Yuen PS et al (1990) Guanylyl cyclase is a heat-stable enterotoxin receptor. Cell 63(5):941–948

    Article  CAS  PubMed  Google Scholar 

  • Schulz S, Lopez MJ, Kuhn M et al (1997) Disruption of the guanylyl cyclase-C gene leads to a paradoxical phenotype of viable but heat-stable enterotoxin-resistant mice. J Clin Invest 100(6):1590–1595

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sherman PM, Mitchell DJ, Cutz E (2004) Neonatal enteropathies: defining the causes of protracted diarrhea of infancy. J Pediatr Gastroenterol Nutr 38(1):16–26

    Article  PubMed  Google Scholar 

  • Silvis MR, Bertrand CA, Ameen N et al (2009) Rab11b regulates the apical recycling of the cystic fibrosis transmembrane conductance regulator in polarized intestinal epithelial cells. Mol Biol Cell 20(8):2337–2350

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Singh RD, Puri V, Valiyaveettil JT et al (2003) Selective caveolin-1-dependent endocytosis of glycosphingolipids. Mol Biol Cell 14(8):3254–3265

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Singh AK, Riederer B, Chen M et al (2010) The switch of intestinal Slc26 exchangers from anion absorptive to HCOFormula secretory mode is dependent on CFTR anion channel function. Am J Physiol Cell Physiol 298(5):C1057–C1065

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Singh V, Yang J, Chen TE et al (2014) Translating molecular physiology of intestinal transport into pharmacologic treatment of diarrhea: stimulation of Na+ absorption. Clin Gastroenterol Hepatol 12(1):27–31

    Article  CAS  PubMed  Google Scholar 

  • Sivagnanam M, Mueller JL, Lee H et al (2008) Identification of EpCAM as the gene for congenital tufting enteropathy. Gastroenterology 135(2):429–437

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sivagnanam M, Janecke AR, Muller T et al (2010a) Case of syndromic tufting enteropathy harbors SPINT2 mutation seen in congenital sodium diarrhea. Clin Dysmorphol 19(1):48

    Article  PubMed  Google Scholar 

  • Sivagnanam M, Schaible T, Szigeti R et al (2010b) Further evidence for EpCAM as the gene for congenital tufting enteropathy. Am J Med Genet A 152A(1):222–224

    Article  CAS  PubMed  Google Scholar 

  • Sixma TK, Kalk KH, Van Zanten BAM et al (1993) Refined structure of Escherichia coli heat-labile enterotoxin, a close relative of cholera toxin. J Mol Biol 230(3):890–918

    Article  CAS  PubMed  Google Scholar 

  • Skelton NJ, Garcia KC, Goeddel DV et al (1994) Determination of the solution structure of the peptide hormone guanylin: observation of a novel form of topological stereoisomerism. Biochemistry 33(46):13581–13592

    Article  CAS  PubMed  Google Scholar 

  • So M, McCarthy BJ (1980) Nucleotide sequence of the bacterial transposon Tn1681 encoding a heat-stable (ST) toxin and its identification in enterotoxigenic Escherichia coli strains. Proc Natl Acad Sci U S A 77(7):4011–4015

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sonawane ND, Muanprasat C, Nagatani R Jr et al (2005) In vivo pharmacology and antidiarrheal efficacy of a thiazolidinone CFTR inhibitor in rodents. J Pharm Sci 94(1):134–143

    Article  CAS  PubMed  Google Scholar 

  • Srivastava R, Zinman HM, McKenzie MD et al (1999) Rotavirus vaccine. Pediatrics 104(6):1419–1420

    Article  CAS  PubMed  Google Scholar 

  • Staples SJ, Asher SE, Giannella RA (1980) Purification and characterization of heat-stable enterotoxin produced by a strain of E. coli pathogenic for man. J Biol Chem 255(10):4716–4721

    CAS  PubMed  Google Scholar 

  • Takao T, Shimonishi Y, Kobayashi M et al (1985a) Amino acid sequence of heat-stable enterotoxin produced by Vibrio cholerae non-01. FEBS Lett 193(2):250–254

    Article  CAS  PubMed  Google Scholar 

  • Takao T, Tominaga N, Yoshimura S et al (1985b) Isolation, primary structure and synthesis of heat-stable enterotoxin produced by Yersinia enterocolitica. Eur J Biochem 152(1):199–206

    Article  CAS  PubMed  Google Scholar 

  • Takeda Y, Takeda T, Yano T et al (1979) Purification and partial characterization of heat-stable enterotoxin of enterotoxigenic Escherichia coli. Infect Immun 25(3):978–985

    CAS  PubMed Central  PubMed  Google Scholar 

  • Talmon G, Holzapfel M, DiMaio DJ et al (2012) Rab11 is a useful tool for the diagnosis of microvillous inclusion disease. Int J Surg Pathol 20(3):252–256

    Article  PubMed  Google Scholar 

  • Taylor M, Navarro-Garcia F, Huerta J et al (2010) Hsp90 is required for transfer of the cholera toxin A1 subunit from the endoplasmic reticulum to the cytosol. J Biol Chem 285(41):31261–31267

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Taylor M, Banerjee T, Ray S et al (2011) Protein-disulfide isomerase displaces the cholera toxin A1 subunit from the holotoxin without unfolding the A1 subunit. J Biol Chem 286(25):22090–22100

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thoeni C, Amir A, Guo C et al (2014a) A novel nonsense mutation in the EpCAM gene in a patient with congenital tufting enteropathy. J Pediatr Gastroenterol Nutr 58(1):18–21

    Article  PubMed  Google Scholar 

  • Thoeni CE, Vogel GF, Tancevski I et al (2014b) Microvillus inclusion disease: loss of Myosin vb disrupts intracellular traffic and cell polarity. Traffic 15(1):22–42

    Article  CAS  PubMed  Google Scholar 

  • Tradtrantip L, Namkung W, Verkman AS (2010) Crofelemer, an antisecretory antidiarrheal proanthocyanidin oligomer extracted from Croton lechleri, targets two distinct intestinal chloride channels. Mol Pharmacol 77(1):69–78

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tsai B, Rodighiero C, Lencer WI et al (2001) Protein disulfide isomerase acts as a redox-dependent chaperone to unfold cholera toxin. Cell 104(6):937–948

    Article  CAS  PubMed  Google Scholar 

  • Tyagi S, Kavilaveettil RJ, Alrefai WA et al (2001) Evidence for the existence of a distinct SO4 ---OH- exchange mechanism in the human proximal colonic apical membrane vesicles and its possible role in chloride transport. Exp Biol Med 226(10):912–918

    CAS  Google Scholar 

  • Vaandrager AB, Bot AG, De Jonge HR (1997) Guanosine 3′,5′-cyclic monophosphate-dependent protein kinase II mediates heat-stable enterotoxin-provoked chloride secretion in rat intestine. Gastroenterology 112(2):437–443

    Article  CAS  PubMed  Google Scholar 

  • Vaandrager AB, Bot AG, Ruth P et al (2000) Differential role of cyclic GMP-dependent protein kinase II in ion transport in murine small intestine and colon. Gastroenterology 118(1):108–114

    Article  CAS  PubMed  Google Scholar 

  • Vega-Salas DE, Salas PJ, Rodriguez-Boulan E (1988) Exocytosis of vacuolar apical compartment (VAC): a cell-cell contact controlled mechanism for the establishment of the apical plasma membrane domain in epithelial cells. J Cell Biol 107(5):1717–1728

    Article  CAS  PubMed  Google Scholar 

  • Wada A, Hirayama T, Kitaura H et al (1996) Identification of ligand recognition sites in heat-stable enterotoxin receptor, membrane-associated guanylyl cyclase C by site-directed mutational analysis. Infect Immun 64(12):5144–5150

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wedenoja S, Holmberg C, Hoglund P (2008) Oral butyrate in treatment of congenital chloride diarrhea. Am J Gastroenterol 103(1):252–254

    Article  PubMed  Google Scholar 

  • Wedenoja S, Hoglund P, Holmberg C (2010) Review article: the clinical management of congenital chloride diarrhoea. Aliment Pharmacol Ther 31(4):477–485

    Article  CAS  PubMed  Google Scholar 

  • Weis VG, Sousa JF, LaFleur BJ et al (2013) Heterogeneity in mouse spasmolytic polypeptide-expressing metaplasia lineages identifies markers of metaplastic progression. Gut 62(9):1270–1279

    Article  CAS  PubMed  Google Scholar 

  • Whittamore JM, Freel RW, Hatch M (2013) Sulfate secretion and chloride absorption are mediated by the anion exchanger DRA (Slc26a3) in the mouse cecum. Am J Physiol Gastrointest Liver Physiol 305(2):G172–G184

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wiegerinck CL, Janecke AR, Schneeberger K et al (2014) Loss of syntaxin 3 causes variant microvillus inclusion disease. Gastroenterology 147(1):65–68, e10

    Article  CAS  PubMed  Google Scholar 

  • Yang N, Garcia MA, Quinton PM (2013) Normal mucus formation requires cAMP-dependent HCO3- secretion and Ca2+-mediated mucin exocytosis. J Physiol 591:4581–4593

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yeo QM, Crutchley R, Cottreau J et al (2013) Crofelemer, a novel antisecretory agent approved for the treatment of HIV-associated diarrhea. Drugs Today 49(4):239–252

    CAS  PubMed  Google Scholar 

  • Yin L, Vijaygopal P, MacGregor GG et al (2014) Glucose stimulates calcium-activated chloride secretion in small intestinal cells. Am J Physiol Cell Physiol 306(7):C687–C696

    Article  CAS  PubMed  Google Scholar 

  • Yoshino K, Miyachi M, Takao T et al (1993) Purification and sequence determination of heat-stable enterotoxin elaborated by a cholera toxin-producing strain of Vibrio cholerae O1. FEBS Lett 326(1–3):83–86

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge Anne Collaco for assistance and technical support and the NIH-R01 DK 077065 to NA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia Ameen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 American Physiological Society

About this chapter

Cite this chapter

Ameen, N., Kopic, S., Ahsan, M.K., Kravtsov, D.V. (2016). Secretory Diarrhea. In: Hamilton, K., Devor, D. (eds) Ion Channels and Transporters of Epithelia in Health and Disease. Physiology in Health and Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3366-2_29

Download citation

Publish with us

Policies and ethics