Skip to main content

Design of shRNA and miRNA for Delivery to the CNS

  • Protocol
Gene Therapy for Neurological Disorders

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1382))

Abstract

Neurologic diseases tend to target various areas of the central nervous system (CNS) and can therefore result in paralysis, dementia, and death. Neurodegenerative diseases distinguish themselves from other diseases by affecting nerve cells, which unlike many other cells in our body cannot regenerate when severely injured. The discovery of RNA interference (RNAi) has enabled scientist to design new therapeutic approaches based on specific gene silencing rather than the canonical gene therapy through gene augmentation. Two types of molecules can be used for viral vector-mediated gene silencing: short hairpin RNAs (shRNAs) and artificial microRNAs (miRNAs) that have the ability to enter the RNAi pathway. Although both shRNAs and miRNAs can be used to silence genes, they enter the RNAi pathway at different points. Unlike shRNAs, miRNAs require an additional cleavage step inside the nucleus before being exported to the cytoplasm. These molecules can then be incorporated into the RNA-induced silencing complex (RISC) which utilizes sequence complementarity to recognize target mRNAs and activate either translational repression, in the case of partial complementarity, or induce mRNA cleavage in the case of complete complementarity. Elevated amounts of shRNAs, which are commonly driven by strong polymerase III promoters, can cause saturation of the endogenous RNAi machinery due to competition between endogenous and artificial molecules. Switching to a DNA polymerase II promoter is an alternative to reduce shRNA production, thereby reducing toxicity. Even though the molecules are designed to target specific mRNAs there may be off-target effects due to nonspecific binding that must be accounted for during the design process. In this chapter we discuss the design and in vitro screening of shRNAs and artificial miRNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sathasivam S (2010) Motor neurone disease: clinical features, diagnosis, diagnostic pitfalls and prognostic markers. Singapore Med J 51(5):367–372, quiz 373

    CAS  PubMed  Google Scholar 

  2. Nowakowski RS (2006) Stable neuron numbers from cradle to grave. Proc Natl Acad Sci U S A 103(33):12219–12220

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Harvey RJ, Skelton-Robinson M, Rossor MN (2003) The prevalence and causes of dementia in people under the age of 65 years. J Neurol Neurosurg Psychiatry 74(9):1206–1209

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Mercy L et al (2008) Incidence of early-onset dementias in Cambridgeshire, United Kingdom. Neurology 71(19):1496–1499

    Article  CAS  PubMed  Google Scholar 

  5. Ratnavalli E et al (2002) The prevalence of frontotemporal dementia. Neurology 58(11):1615–1621

    Article  CAS  PubMed  Google Scholar 

  6. Williams DB, Floate DA, Leicester J (1988) Familial motor neuron disease: differing penetrance in large pedigrees. J Neurol Sci 86(2-3):215–230

    Article  CAS  PubMed  Google Scholar 

  7. Ferri CP et al (2005) Global prevalence of dementia: a Delphi consensus study. Lancet 366(9503):2112–2117

    Article  PubMed Central  PubMed  Google Scholar 

  8. de Lau LM, Breteler MM (2006) Epidemiology of Parkinson’s disease. Lancet Neurol 5(6):525–535

    Article  PubMed  Google Scholar 

  9. Borel F, Kay MA, Mueller C (2013) Recombinant AAV as a platform for translating the therapeutic potential of RNA interference. Mol Ther 22(4):692–701

    Article  PubMed  Google Scholar 

  10. Davidson BL, McCray PB Jr (2011) Current prospects for RNA interference-based therapies. Nat Rev Genet 12(5):329–340

    Article  CAS  PubMed  Google Scholar 

  11. Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2(4):279–289

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. van der Krol AR et al (1990) Flavonoid genes in petunia: addition of a limited number of gene copies may lead to a suppression of gene expression. Plant Cell 2(4):291–299

    Article  PubMed Central  PubMed  Google Scholar 

  13. Fire A et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391(6669):806–811

    Article  CAS  PubMed  Google Scholar 

  14. Vannini A, Cramer P (2012) Conservation between the RNA polymerase I, II, and III transcription initiation machineries. Mol Cell 45(4):439–446

    Article  CAS  PubMed  Google Scholar 

  15. Zamore SLAPD (2013) Diversifying microRNA sequence and function. Nat Rev Mol Cell Biol 14:475–488

    Article  PubMed  Google Scholar 

  16. Macrae IJ et al (2006) Structural basis for double-stranded RNA processing by Dicer. Science 311(5758):195–198

    Article  CAS  PubMed  Google Scholar 

  17. Park JE et al (2011) Dicer recognizes the 5′ end of RNA for efficient and accurate processing. Nature 475(7355):201–205

    Article  CAS  PubMed  Google Scholar 

  18. Zeng Y, Yi R, Cullen BR (2005) Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha. EMBO J 24(1):138–148

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Pan Q et al (2012) A dynamic perspective of RNAi library development. Trends Biotechnol 30(4):206–215

    Article  CAS  PubMed  Google Scholar 

  20. Birmingham A et al (2006) 3′ UTR seed matches, but not overall identity, are associated with RNAi off-targets. Nat Methods 3(3):199–204

    Article  CAS  PubMed  Google Scholar 

  21. Grimm D (2011) The dose can make the poison: lessons learned from adverse in vivo toxicities caused by RNAi overexpression. Silence 2:8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Maczuga P et al (2012) Optimization and comparison of knockdown efficacy between polymerase II expressed shRNA and artificial miRNA targeting luciferase and Apolipoprotein B100. BMC Biotechnol 12:42

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Auyeung VC et al (2013) Beyond secondary structure: primary-sequence determinants license pri-miRNA hairpins for processing. Cell 152(4):844–858

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Han J et al (2004) The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev 18(24):3016–3027

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Zeng Y, Cullen BR (2004) Structural requirements for pre-microRNA binding and nuclear export by Exportin 5. Nucleic Acids Res 32(16):4776–4785

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Chen CZ et al (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science 303(5654):83–86

    Article  CAS  PubMed  Google Scholar 

  27. Gu S et al (2012) The loop position of shRNAs and pre-miRNAs is critical for the accuracy of dicer processing in vivo. Cell 151(4):900–911

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Lewis BP et al (2003) Prediction of mammalian microRNA targets. Cell 115(7):787–798

    Article  CAS  PubMed  Google Scholar 

  29. Siolas D et al (2005) Synthetic shRNAs as potent RNAi triggers. Nat Biotechnol 23(2):227–231

    Article  CAS  PubMed  Google Scholar 

  30. Boudreau RL, Monteys AM, Davidson BL (2008) Minimizing variables among hairpin-based RNAi vectors reveals the potency of shRNAs. RNA 14(9):1834–1844

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Mueller Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Toro Cabrera, G., Mueller, C. (2016). Design of shRNA and miRNA for Delivery to the CNS. In: Manfredsson, F. (eds) Gene Therapy for Neurological Disorders. Methods in Molecular Biology, vol 1382. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3271-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3271-9_5

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3270-2

  • Online ISBN: 978-1-4939-3271-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics