Skip to main content

The Use of Metal Fluoride Compounds as Phosphate Analogs for Understanding the Structural Mechanism in P-type ATPases

  • Protocol
P-Type ATPases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1377))

Abstract

The membrane-bound protein family, P-type ATPases, couples ATP hydrolysis with substrate transport across the membrane and forms an obligatory auto-phosphorylated intermediate in the transport cycle. The metal fluoride compounds, BeF x , AlF x , and MgF x , as phosphate analogs stabilize different enzyme structural states in the phosphoryl transfer/hydrolysis reactions, thereby fixing otherwise short-lived intermediate and transient structural states and enabling their biochemical and atomic-level crystallographic studies. The compounds thus make an essential contribution for understanding of the ATP-driven transport mechanism. Here, with a representative member of P-type ATPase, sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA), we describe the method for their binding and for structural and functional characterization of the bound states, and their assignments to states occurring in the transport cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lassila JK, Zalatan JG, Herschlag D (2011) Biological phosphoryl-transfer reactions: understanding mechanism and catalysis. Annu Rev Biochem 80:669–702

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Fersht AR (1999) Structure and mechanism in protein science. W. H. Freeman and Co., New York, NY

    Google Scholar 

  3. Allen KN, Dunaway-Mariano D (2004) Phosphoryl group transfer: evolution of a catalytic scaffold. Trends Biochem Sci 29:495–503

    Article  PubMed  CAS  Google Scholar 

  4. Webb MR, Trentham DR (1981) The stereochemical course of phosphoric residue transfer catalyzed by sarcoplasmic reticulum ATPase. J Biol Chem 256:4884–4887

    PubMed  CAS  Google Scholar 

  5. Bublitz M, Poulsen H, Morth JP, Nissen P (2010) In and out of the cation pumps: P-type ATPase structure revisited. Curr Opin Struct Biol 20:431–439

    Article  PubMed  CAS  Google Scholar 

  6. Toyoshima C (2008) Structural aspects of ion pumping by Ca2 + -ATPase of sarcoplasmic reticulum. Arch Biochem Biophys 476:3–11

    Google Scholar 

  7. Toyoshima C (2009) How Ca2+-ATPase pumps ions across the sarcoplasmic reticulum membrane. Biochim Biophys Acta 1793:941–946

    Article  PubMed  CAS  Google Scholar 

  8. Møller JV, Olesen C, Winther A-ML, Nissen P (2010) The sarcoplasmic Ca2+-ATPase: design of a perfect chemi-osmotic pump. Q Rev Biophys 43:501–566

    Article  PubMed  Google Scholar 

  9. Goličnik M (2010) Metallic fluoride complexes as phosphate analogues for structural and mechanistic studies of phosphoryl group transfer enzymes. Acta Chim Slov 57:272–287

    PubMed  Google Scholar 

  10. Wang W, Cho HS, Kim R, Jancarik J, Yokota H, Nguyen HH, Grigoriev IV, Wemmer DE, Kim S-H (2002) Structural characterization of the reaction pathway in phosphoserine phosphatase: “crystallographic snapshots” of intermediate states. J Mol Biol 319:421–431

    Article  PubMed  CAS  Google Scholar 

  11. Danko S, Daiho T, Yamasaki K, Kamidochi M, Suzuki H, Toyoshima C (2001) ADP-insensitive phosphoenzyme intermediate of sarcoplasmic reticulum Ca2+-ATPase has a compact conformation resistant to proteinase K, V8 protease and trypsin. FEBS Lett 489:277–282

    Article  PubMed  CAS  Google Scholar 

  12. Danko S, Yamasaki K, Daiho T, Suzuki H, Toyoshima C (2001) Organization of cytoplasmic domains of sarcoplasmic reticulum Ca2+-ATPase in E1P and E1ATP states: a limited proteolysis study. FEBS Lett 505:129–135

    Article  PubMed  CAS  Google Scholar 

  13. Danko S, Yamasaki K, Daiho T, Suzuki H (2004) Distinct natures of beryllium fluoride-bound, aluminum fluoride-bound, and magnesium fluoride-bound stable analogues of an ADP-insensitive phosphoenzyme intermediate of sarcoplasmic reticulum Ca2+-ATPase. J Biol Chem 279:14991–14998

    Article  PubMed  CAS  Google Scholar 

  14. Danko S, Daiho T, Yamasaki K, Liu X, Suzuki H (2009) Formation of the stable structural analog of ADP-sensitive phosphoenzyme of Ca2+-ATPase with occluded Ca2+ by beryllium fluoride: structural changes during phosphorylation and isomerization. J Biol Chem 284:22722–22735

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Toyoshima C, Nakasako M, Nomura H, Ogawa H (2000) Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Å resolution. Nature 405:647–655

    Article  PubMed  CAS  Google Scholar 

  16. Toyoshima C, Nomura H (2002) Structural changes in the calcium pump accompanying the dissociation of calcium. Nature 418:605–611

    Article  PubMed  CAS  Google Scholar 

  17. Toyoshima C, Mizutani T (2004) Crystal structure of the calcium pump with a bound ATP analogue. Nature 430:529–535

    Article  PubMed  CAS  Google Scholar 

  18. Toyoshima C, Nomura H, Tsuda T (2004) Lumenal gating mechanism revealed in calcium pump crystal structures with phosphate analogues. Nature 432:361–368

    Article  PubMed  CAS  Google Scholar 

  19. Sørensen TL-M, Møller JV, Nissen P (2004) Phosphoryl transfer and calcium ion occlusion in the calcium pump. Science 304:1672–1675

    Article  PubMed  Google Scholar 

  20. Toyoshima C, Norimatsu Y, Iwasawa S, Tsuda T, Ogawa H (2007) How processing of aspartylphosphate is coupled to lumenal gating of the ion pathway in the calcium pump. Proc Natl Acad Sci U S A 104:19831–19836

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Olesen C, Picard M, Winther AM, Gyrup C, Morth JP, Oxvig C, Møller JV, Nissen P (2007) The structural basis of calcium transport by the calcium pump. Nature 450:1036–1042

    Article  PubMed  CAS  Google Scholar 

  22. Schlichting I, Reinstein J (1999) pH influences fluoride coordination number of the AlFx phosphoryl transfer transition state analog. Nat Struct Biol 6:721–723

    Google Scholar 

  23. Daiho T, Kubota T, Kanazawa T (1993) Stoichiometry of tight binding of magnesium and fluoride to phosphorylation and high-affinity binding of ATP, vanadate, and calcium in the sarcoplasmic reticulum Ca2+-ATPase. Biochemistry 32:10021–10026

    Article  PubMed  CAS  Google Scholar 

  24. Nakamura S, Suzuki H, Kanazawa T (1994) The ATP-induced change of tryptophan fluorescence reflects a conformational change upon formation of ADP-sensitive phosphoenzyme in the sarcoplasmic reticulum Ca2+-ATPase. J Biol Chem 269:16015–16019

    PubMed  CAS  Google Scholar 

  25. Maruyama K, MacLennan DH (1988) Mutation of aspartic acid-351, lysine-352, and lysine-515 alters the Ca2+ transport activity of the Ca2+-ATPase expressed in COS-1 cells. Proc Natl Acad Sci U S A 85:3314–3318

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Daiho T, Yamasaki K, Danko S, Suzuki H (2007) Critical role of Glu40-Ser48 loop linking actuator domain and first transmembrane helix of Ca2+-ATPase in Ca2+ deocclusion and release from ADP-insensitive phosphoenzyme. J Biol Chem 282:34429–34447

    Article  PubMed  CAS  Google Scholar 

  27. Daiho T, Danko S, Yamasaki K, Suzuki H (2010) Stable structural analog of Ca2+-ATPase ADP-insensitive phosphoenzyme with occluded Ca2+ formed by elongation of A-domain/M1’-linker and beryllium fluoride binding. J Biol Chem 285:24538–24547

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Murphy AJ, Coll RJ (1993) Formation of a stable inactive complex of the sarcoplasmic reticulum calcium ATPase with magnesium, beryllium, and fluoride. J Biol Chem 268:23307–23310

    PubMed  CAS  Google Scholar 

  29. Abe K, Tani K, Fujiyoshi Y (2010) Structural and functional characterization of H+, K+-ATPase with bound fluorinated phosphate analogs. J Struct Biol 170:60–68

    Article  PubMed  CAS  Google Scholar 

  30. Cornelius F, Mahmmoud YA, Toyoshima C (2011) Metal fluoride complexes of Na, K-ATPase: characterization of fluoride-stabilized phosphoenzyme analogues and their interaction with cardiotonic steroids. J Biol Chem 286:29882–29892

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Picard M, Jensen AM, Sørensen T, Champeil L, Møller JV, Nissen P (2007) Ca2+ versus Mg2+ coordination at the nucleotide-binding site of the sarcoplasmic reticulum Ca2+-ATPase. J Mol Biol 368:1–7

    Article  PubMed  CAS  Google Scholar 

  32. Troullier A, Girardet J-L, Dupont Y (1992) Fluoroaluminate complexes are bifunctional analogues of phosphate in sarcoplasmic reticulum Ca2+-ATPase. J Biol Chem 267:22821–22829

    PubMed  CAS  Google Scholar 

  33. Hatori Y, Lewis D, Toyoshima C, Inesi G (2009) Reaction cycle of Thermotoga maritima copper ATPase and conformational characterization of catalytically deficient mutants. Biochemistry 48:4871–4880

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgement

This work was supported by JSPS KAKENHI Grant Number 23370058.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Suzuki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Danko, S.J., Suzuki, H. (2016). The Use of Metal Fluoride Compounds as Phosphate Analogs for Understanding the Structural Mechanism in P-type ATPases. In: Bublitz, M. (eds) P-Type ATPases. Methods in Molecular Biology, vol 1377. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3179-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3179-8_19

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3178-1

  • Online ISBN: 978-1-4939-3179-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics