Skip to main content

Topics in Study Design and Analysis for Multistage Clinical Proteomics Studies

  • Protocol
Statistical Analysis in Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1362))

Abstract

This chapter discusses the design issues in clinical proteomics study and provides specific suggestions for addressing these questions when using the standard guidelines for the planning. It provides two methods for the sample size estimation in study design. The first method is used for the planning of a clinical proteomic study at the discovery or verification stage; the second method is proposed for the systematic planning of a multistage study. The second part of the chapter introduces three approaches to analyzing the clinical proteomic study and provides analyses for two case studies of clinical proteomic discoveries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chapman JR (1996) Protein and peptide analysis by mass spectrometry. Humana Press Inc., Totowa, NJ

    Book  Google Scholar 

  2. Palmblad M, Tiss A, Cramer R (2009) Mass spectrometry in clinical proteomics—from the present to the future. Proteomics Clin Appl 3:6–17

    Article  CAS  PubMed  Google Scholar 

  3. Anderson L (2005) Candidate-based proteomics in the search for biomarkers of cardiovascular disease. J Physiol 563:23–60

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Shadforth IP, Dunkley TP, Lilley KS et al (2005) i-Tracker: for quantitative proteomics using iTRAQ. BMC Genomics 6:145

    Article  PubMed Central  PubMed  Google Scholar 

  5. Corthals GL, Rose K (2007) Quantitation in proteomics, in proteome research: concepts, technology and application. Springer, Berlin

    Google Scholar 

  6. Mertins P, Yang F, Liu T et al (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13:1690–1704

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Galloa V, Eggerc M, McCormack V et al (2011) STrengthening the Reporting of OBservational studies in Epidemiology-Molecular Epidemiology STROBE-ME: an extension of the STROBE statement. J Clin Epidemiol 64:1350–1363

    Article  Google Scholar 

  8. Kleinbaum DG (2003) ActivEpi. Springer, New York

    Google Scholar 

  9. Lagiou P, Adami H-O, Trichopoulos D (2005) Causality in cancer epidemiology. Eur J Epidemiol 20:565–574

    Article  PubMed  Google Scholar 

  10. Katan M (1986) Apolipoprotein E isoforms, serum cholesterol, and cancer. Lancet 1:507–508

    Article  CAS  PubMed  Google Scholar 

  11. Qi L (2009) Mendelian randomization in nutritional epidemiology. Nutr Rev 67:439–450

    Article  PubMed Central  PubMed  Google Scholar 

  12. Verhoeven KJF, Simonsen KL, McIntyre LM (2005) Implementing false discovery rate control: increasing your power. Oikos 108:643–647

    Article  Google Scholar 

  13. Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29:1165–1188

    Article  Google Scholar 

  14. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc 57:289–300

    Google Scholar 

  15. Zeng ISL, Lumley T, Ruggiero K et al (2013) Two optimization strategies of multi-stage design in clinical proteomic studies. Stat Appl Genet Mol Biol 12:263–283

    PubMed  Google Scholar 

  16. von Elm E, Altman D, Egger M et al (2007) The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. PLoS Med 4, e297

    Article  Google Scholar 

  17. Tzoulaki I, Ebbels TMD, Valdes A et al (2014) Design and analysis of metabolomics studies in epidemiologic research: a primer on -omic technologies. Am J Epidemiol 180:129–139

    Article  PubMed  Google Scholar 

  18. McShane LM, Altman DG, Sauerbrei W et al (2005) REporting recommendations for tumor MARKer prognostic studies (REMARK). Nat Clin Pract Oncol 2

    Google Scholar 

  19. Kuller LH, Bracken MB, Ogino S et al (2013) The role of epidemiology in the era of molecular epidemiology and genomics: summary of the 2013 AJE-sponsored Society of Epidemiologic Research Symposium. Am J Epidemiol 178:1350–1354

    Article  PubMed Central  PubMed  Google Scholar 

  20. Malats N, Castaño-Vinyals G (2007) Cancer epidemiology: study designs and data analysis. Clin Transl Oncol 9:290–297

    Article  CAS  PubMed  Google Scholar 

  21. Zeng ISL, Browning S, Gladding P et al (2009) A multi-feature reproducibility assessment of mass spectral data in clinical proteomic studies. Clin Proteomics 5:170–177

    Article  CAS  Google Scholar 

  22. Bossuyt PM, Reitsma JB, Bruns DE et al (2003) Towards complete and accurate reporting of studies of diagnostic accuracy: the STARD initiative. BMJ 326:41–44

    Article  PubMed Central  PubMed  Google Scholar 

  23. Bonassi S, Au WW (2002) Biomarkers in molecular epidemiology studies for health risk prediction. Mutat Res 511:73–86

    Article  CAS  PubMed  Google Scholar 

  24. Thomas D, Conti D (2004) The concept of ‘Mendelian Randomization’. Int J Epidemiol 33:21–25

    Article  PubMed  Google Scholar 

  25. Lawlor DA, Harbord RM, Sterne JA et al (2008) Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med 27:1133–1163

    Article  PubMed  Google Scholar 

  26. Applied Biosystems/MDS SCIEX, ProteinPilotâ„¢ Software (2007) Getting started guide

    Google Scholar 

  27. Breitwieser FP, Muller A, Dayon L et al (2001) General Statistical Modeling of Data from Protein Relative Expression Isobaric Tags. J Proteome Res 10:2758–2766

    Article  Google Scholar 

  28. Oberg AL, Mahoney DW (2012) Statistical methods for quantitative mass spectrometry proteomic experiments with labeling. BMC Bioinformatics 13:S7

    PubMed Central  CAS  PubMed  Google Scholar 

  29. Zeng ISL (2014) Doctorate thesis: Statistical methods in clinical proteomic studies 2007-2014—a protein concerto. In: Statistics2014, University of Auckland: ResearchSpace@Auckland. p 218

    Google Scholar 

  30. Goldstain H (1999) Multivariate multilevel model. In: Multilevel statistics models 1999. London, Institute of Education, p 5–6

    Google Scholar 

  31. Li X (2005) PROcess: Ciphergen SELDI-TOF processing. R package

    Google Scholar 

  32. Boehm AM, Putz S, Altenhofer D et al (2007) Precise protein quantification based on peptide quantification using iTRAQâ„¢. BMC Bioinformatics 8:214

    Article  PubMed Central  PubMed  Google Scholar 

  33. Clinical proteomic program data portal: OvarianDataset4-3-02.zip. A.2.1. http://home.ccr.cancer.gov/ncifdaproteomics/ppatterns.asp

  34. Hochberg Y (1988) A sharper Bonferroni procedure for multiple tests of significance. Biometrika 75:800–803

    Article  Google Scholar 

  35. CPTAC, TCGA Cancer proteome study of colorectal tissue. https://cptac-data-portal.georgetown.edu/cptac/s/S016

  36. Zhang B, Wang J, Wang X et al (2013) Proteogenomic characterization of human colon and rectal cancer. Nature 513:382–387

    Article  Google Scholar 

Download references

Acknowledgements

The colorectal proteomic data used in this publication were generated by the Clinical Proteomic Tumor Analysis Consortium (NCI/NIH). The mass spectral intensity data of ovarian study are provided by the proteomic databank of Centre for Cancer Research (http://home.ccr.canccr.gov/ncifdaprotcomics/ppatterns.asp). Some codes of producing heat map are modified from the blog: http://learnr.wordpress.com/2010/01/26/ggplot2-quick-heatmap-plotting for NBA game. The author’s first learning of Mendelian randomization method in 2010 is attributed to Professor Thomas Lumley.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene Sui Lan Zeng Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Zeng, I.S.L. (2016). Topics in Study Design and Analysis for Multistage Clinical Proteomics Studies. In: Jung, K. (eds) Statistical Analysis in Proteomics. Methods in Molecular Biology, vol 1362. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3106-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3106-4_2

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3105-7

  • Online ISBN: 978-1-4939-3106-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics