Skip to main content

Protein Expression in Insect and Mammalian Cells Using Baculoviruses in Wave Bioreactors

  • Protocol
Baculovirus and Insect Cell Expression Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1350))

Abstract

Many types of disposable bioreactors for protein expression in insect and mammalian cells are now available. They differ in design, capacity, and sensor options, with many selections available for either rocking platform, orbitally shaken, pneumatically mixed, or stirred-tank bioreactors lined with an integral disposable bag (Shukla and Gottschalk, Trends Biotechnol 31(3):147–154, 2013). WAVE Bioreactors™ were among the first disposable systems to be developed (Singh, Cytotechnology 30:149–158, 1999). Since their commercialization in 1999, Wave Bioreactors have become routinely used in many laboratories due to their ease of operation, limited utility requirements, and protein expression levels comparability to traditional stirred-tank bioreactors. Wave Bioreactors are designed to use a presterilized Cellbag™, which is attached to a rocking platform and inflated with filtered air provided by the bioreactor unit. The Cellbag can be filled with medium and cells and maintained at a set temperature. The rocking motion, which is adjusted through angle and rock speed settings, provides mixing of oxygen (and CO2, which is used to control pH in mammalian cell cultures) from the headspace created in the inflated Cellbag with the cell culture medium and cells. This rocking motion can be adjusted to prevent cell shear damage. Dissolved oxygen and pH can be monitored during scale-up, and samples can be easily removed to monitor other parameters. Insect and mammalian cells grow very well in Wave Bioreactors (Shukla and Gottschalk, Trends Biotechnol 31(3):147–154, 2013). Combining Wave Bioreactor cell growth capabilities with recombinant baculoviruses engineered for insect or mammalian cell expression has proven to be a powerful tool for rapid production of a wide range of proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shukla AA, Gottschalk U (2013) Single-use disposable technologies for biopharmaceutical manufacturing. Trends Biotechnol 31(3):147–154

    Article  PubMed  CAS  Google Scholar 

  2. Singh V (1999) Disposable bioreactor for cell culture using wave-induced agitation. Cytotechnology 30:149–158

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Eibl R, Kaiser S, Lobriser R et al (2010) Disposable bioreactors: the current state-of-the-art and recommended applications in biotechnology. Appl Microbiol Biotechnol 86:41–49

    Article  PubMed  CAS  Google Scholar 

  4. Weber W, Weber E, Geisse S et al (2002) Optimization of protein expression and establishment of the Wave Bioreactor for Baculovirus/insect cell culture. Cytotechnology 38:77–85

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Kadwell SH, Hardwicke PI (2007) Production of baculovirus-expressed recombinant proteins in wave bioreactors. In: Murhammer D (ed) Baculovirus and insect cell expression protocols, 2nd edn. Humana Press, Totowa, NJ, pp 247–266

    Google Scholar 

  6. Wang L, Hu H, Yang J, Wang F, Kaisermayer C, Zhou P (2012) High yield of human monoclonal antibody produced by stably transfected Drosophila Schneider 2 cells in perfusion culture using wave bioreactor. Mol Biotechnol 52(2):170–179

    Article  PubMed  CAS  Google Scholar 

  7. Hami LS, Green C, Leshinsky N et al (2004) GMP production and testing of Xcellerated T cells for the treatment of patients with CLL. Cytotherapy 6(6):554–562

    Article  PubMed  CAS  Google Scholar 

  8. Somerville RP, Devillier L, Parkhurst MR et al (2012) Clinical scale rapid expansion of lymphocytes for adoptive cell transfer therapy in the WAVE® bioreactor. J Transl Med 10:69

    Article  PubMed  PubMed Central  Google Scholar 

  9. van der Loo JC, Swaney WP, Grassman E et al (2012) Scale-up and manufacturing of clinical-grade self-inactivating γ-retroviral vectors by transient transfection. Gene Ther 19(3):246–254

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Kwon JY, Yang YS, Cheon SH et al (2013) Bioreactor engineering using disposable technology for enhanced production of hCTLA4Ig in transgenic rice cell cultures. Biotechnol Bioeng 110:2412–2424. doi:10.1002/bit.24916

    Article  PubMed  CAS  Google Scholar 

  11. Dalton JP, Demanga CG, Reiling SJ et al (2012) Large-scale growth of the Plasmodium falciparum malaria parasite in a wave bioreactor. Int J Parasitol 42(3):215–220

    Article  PubMed  CAS  Google Scholar 

  12. Mahajan E, Matthews T, Hamilton R et al (2010) Use of disposable reactors to generate inoculum cultures for E. coli production fermentations. Biotechnol Prog 26(4):1200–1203

    PubMed  CAS  Google Scholar 

  13. Rao G, Moreira A, Brorson K (2009) Disposable bioprocessing: the future has arrived. Biotechnol Bioeng 102(2):348–560

    Article  PubMed  CAS  Google Scholar 

  14. Condreay JP, Witherspoon SM, Clay WC et al (1999) Transient and stable gene expression in mammalian cells transduced with a recombinant baculovirus vector. Proc Natl Acad Sci U S A 96:127–132

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Ames RS, Kost TA, Condreay JP (2007) BacMam technology and its application to drug discovery. Expert Opin Drug Discov 2(12):1669–1681

    Article  PubMed  CAS  Google Scholar 

  16. Ramos L, Kopec LA, Sweitzer SM et al (2002) Rapid expression of recombinant proteins in modified CHO cells using the baculovirus system. Cytotechnology 38(1-3):37–41

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Hu YC, Tsai CT, Chang YJ et al (2003) Enhancement and prolongation of baculovirus-mediated expression in mammalian cells: focuses on strategic infection and feeding. Biotechnol Prog 19(2):373–379

    Article  PubMed  CAS  Google Scholar 

  18. Wulhfard S, Tissot S, Bouchet S et al (2008) Mild hypothermia improves transient gene expression yields several fold in Chinese hamster ovary cells. Biotechnol Prog 24(2):458–465

    Article  PubMed  CAS  Google Scholar 

  19. Scott MJ, Modha SS, Rhodes AD et al (2007) Efficient expression of secreted proteases via recombinant BacMam virus. Protein Expr Purif 52:104–116

    Article  PubMed  CAS  Google Scholar 

  20. Condreay JP, Ames RS, Hassan NJ et al (2006) Baculoviruses and mammalian cell-based assays for drug screening. Adv Virus Res 68:255–286

    Article  PubMed  CAS  Google Scholar 

  21. Chiocca S, Baker A, Cotten M (1997) Identification of a novel antiapoptotic protein, GAM-1, encoded by the CELO adenovirus. J Virol 71(4):3168–3177

    PubMed  PubMed Central  CAS  Google Scholar 

  22. Chiocca S, Kurtev V, Colombo R et al (2002) Histone deacetylase 1 inactivation by an adenovirus early gene product. Curr Biol 12(7):594–598

    Article  PubMed  CAS  Google Scholar 

  23. Hacker DL, Derow E, Wurm FM (2005) The CELO adenovirus Gam1 protein enhances transient and stable recombinant protein expression in Chinese hamster ovary cells. J Biotechnol 117(1):21–29

    Article  PubMed  CAS  Google Scholar 

  24. Gallimore PH, Turnell AS (2001) Adenovirus E1A: remodelling the host cell, a life or death experience. Oncogene 20(54):7824–7835

    Article  PubMed  CAS  Google Scholar 

  25. Cockett MI, Bebbington CR, Yarranton GT (1991) The use of engineered E1A genes to transactivate the hCMV-MIE promoter in permanent CHO cell lines. Nucleic Acids Res 19(2):319–325

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Kemp CW, Gugel A, Birch A (2012) Transient expression of recombinant immunoglobulin in HEK-293 and CHO-S cells using BacMam transduction. BioProcess J 11(2):4–12

    Article  CAS  Google Scholar 

  27. Janakiraman V, Forrest WF, Seshagiri S (2006) Estimation of baculovirus titer based on viable cell size. Nat Protoc 1(5):2271–2276

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Condreay J.P., Clay W.C., and Kost T.A. for the details on the CHO-GE cell line construction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sue H. Kadwell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kadwell, S.H., Overton, L.K. (2016). Protein Expression in Insect and Mammalian Cells Using Baculoviruses in Wave Bioreactors. In: Murhammer, D. (eds) Baculovirus and Insect Cell Expression Protocols. Methods in Molecular Biology, vol 1350. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3043-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3043-2_12

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3042-5

  • Online ISBN: 978-1-4939-3043-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics