Skip to main content

Preoperative Stress Conditioning in Humans: Is Oxygen the Drug of Choice?

  • Conference paper
Oxygen Transport to Tissue XXXVII

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 876))

Abstract

Complications following invasive medical and surgical procedures are common and costly. No clinical protocols exist to actively condition patients prior to these high risk interventions. Effective preconditioning algorithms have been repeatedly demonstrated in animal models for more than a quarter century, where brief exposures to hyperthermia (heat shock), ischemia (ischemic preconditioning) or hypoxia have been employed. Heat shock pretreatment confers protection against experimental acute ischemia-reperfusion, endotoxin challenge and other stressors. The resulting state of protection is short lived (hours) and is associated with new gene expression, typical of a cell stress response (CSR). We aim to use the CSR to actively precondition patients before surgery, a process termed stress conditioning (SC). SC is a procedure in which tissues are briefly exposed to a conditioning stressor and recovered to permit the development of a transient state of resistance to ischemia-reperfusion injury. Successful SC of humans prior to surgery may reduce postoperative complications related to periods of hypotension, hypoxia, or ischemia. Stressors such as heat shock, acute ischemia, endotoxin, heavy metals or hypoxia can induce this protected state but are themselves harmful and of limited clinical utility. The identification of a stressor that could induce the CSR in a non-harmful manner seemed unlikely, until high dose oxygen was considered. Human microvascular endothelial cells (HMEC-1) exposed to high dose oxygen at 2.4 ATA × 60–90 min developed increased resistance to an oxidant challenge in vitro (peroxide). The molecular changes described here, together with our understanding of the CSR and SC phenomena, suggest high dose oxygen may be the drug of choice for clinical preconditioning protocols and should be systematically tested in clinical trials. Oxygen dosing includes the following ranges: room air exposure is 0.21 ATA, clinical oxygen therapy 0.3–1.0 ATA (normobaric hyperoxia) and hyperbaric oxygen is 1.5–3.0 ATA (ATA—atmosphere absolute).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bracton 1240 (1966) Oxford dictionary of English proverbs (De Legibus), 2nd edn. Clarendon Press, Glocestershire, UK, p 251

    Google Scholar 

  2. Bartels K, Karhausen J, Clambey ET et al (2013) Perioperative organ injury. Anesthesiology 119(6):1474–1489

    Article  PubMed  PubMed Central  Google Scholar 

  3. Nearman H, Klick JC, Eisenberg P, Pesa N (2014) Perioperative complications of cardiac surgery and postoperative care. Crit Care Clin 30(3):527–555

    Article  PubMed  Google Scholar 

  4. Levinson DR (2010) Adverse events in hospitals: national incidence among medicare beneficiaries. OIG, Department of Health and Human Services, OEI 06-09-00090, http://oig.hhs.gov/oei/reports/oei-06-00090.pdf

  5. Vincent C, Neale G, Woloshynowych M (2001) Adverse events in British hospitals: preliminary retrospective record review. BMJ 322:517–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wilson RM, Runciman WB, Gibberd RW et al (1995) The quality in Australian health care study. Med J Aust 163:458–471

    CAS  PubMed  Google Scholar 

  7. Tarakji KG, Sabik JF 3rd, Bhudia SK et al (2011) Temporal onset, risk factors, and outcomes associated with stroke after coronary artery bypass grafting. JAMA 305(4):381–390

    Article  CAS  PubMed  Google Scholar 

  8. Ovize M, Thibault H, Przyklenk K (2013) Myocardial conditioning: opportunities for clinical translation. Circ Res 113(4):439–450

    Article  CAS  PubMed  Google Scholar 

  9. Dezfulian C, Garrett M, Gonzalez NR (2013) Clinical application of preconditioning and postconditioning to achieve neuroprotection. Transl Stroke Res 4(1):19–24

    Article  PubMed  PubMed Central  Google Scholar 

  10. Perdrizet GA (1997) Heat shock response and organ preservation: models of stress conditioning. R.G. Landes/Chapman and Hall, Austin/New York

    Google Scholar 

  11. Perdrizet GA, Rewinski MJ, Noonan EJ, Hightower LE (2007) The biology of the heat shock response and stress conditioning. In: Calderwood S (ed) Protein reviews, cell stress proteins. Springer, New York, pp 7–56

    Chapter  Google Scholar 

  12. Henle KJ, Dethlefsen LA (1978) Heat fractionation and thermotolerance: a review. Cancer Res 38:1843–1851

    CAS  PubMed  Google Scholar 

  13. Perdrizet GA, Heffron TG, Buckingham FC et al (1989) Stress conditioning: a novel approach to organ preservation. Curr Surg 46:23–26

    CAS  PubMed  Google Scholar 

  14. Perdrizet GA, Lena CJ, Shapiro D, Rewinski MJ (2002) Preoperative stress conditioning prevents paralysis following experimental aortic surgery. J Thorac Cardiovasc Surg 124:162–170

    Article  PubMed  Google Scholar 

  15. Perdrizet GA (1997) Heat shock response and organ preservation: models of stress conditioning, medical intelligence unit. RG Landes, Austin

    Google Scholar 

  16. Perdrizet GA (1995) Heat shock and tissue protection. New Horiz 3:312–320

    CAS  PubMed  Google Scholar 

  17. Landry J, Bernier D, Chrétien P et al (1982) Synthesis and degradation of heat shock proteins during development and decay of thermotolerance. Cancer Res 42:2457–2461

    CAS  PubMed  Google Scholar 

  18. Urano M (1986) Kinetics of thermotolerance in normal and tumor tissues: a review. Cancer Res 46:474–482

    CAS  PubMed  Google Scholar 

  19. Crile G Jr (1963) The effects of heat and radiation on cancers implanted on the feet of mice. Cancer Res 23:372–380

    PubMed  Google Scholar 

  20. Ritossa F (1964) Experimental activation of specific loci in polytene chromosomes of Drosophila. Exp Cell Res 35:601–607

    Article  CAS  PubMed  Google Scholar 

  21. Schlesinger MJ, Ashburner J, Tissières A (eds) (1982) Heat shock from bacteria to man. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  22. Lindquist S (1986) The heat-shock response. Annu Rev Biochem 55:1151–1191

    Article  CAS  PubMed  Google Scholar 

  23. Voellmy R, Boellman F (2007) Chaperone regulation of heat shock protein response. In: Csermely P, Vigh L (eds) Molecular aspects of the stress response: chaperones, membranes and networks. Landes Bioscience/Springer Science + Business Media, Austin/New York, pp 89–99

    Chapter  Google Scholar 

  24. Selye H (1936) A syndrome produced by diverse nocuous agents. Nature 138:32

    Google Scholar 

  25. Hightower LE, Guidon PT, Whelan SA et al (1985) Stress responses in avian and mammalian cells. In: Atkinson BC, Walden DB (eds) Changes in eukaryotic gene expression in response to environmental stress. Academic, Orlando, pp 197–210

    Chapter  Google Scholar 

  26. Selye H (1976) Stress in health and disease. Butterworth, Boston

    Google Scholar 

  27. Perdrizet GA (1997) Hans Selye and beyond: responses to stress. Cell Stress Chaperones 2(4):1–6

    Article  Google Scholar 

  28. Neely JR, Grotyohann LW (1984) Role of glycolytic products in damage to ischemic myocardium. Circ Res 55:816–824

    Article  CAS  PubMed  Google Scholar 

  29. Kato H, Liu Y, Araki T, Kogure K (1991) Temporal profile of the effects of pretreatment with brief cerebral ischemia on the neuronal damage following secondary ischemic insult in the gerbil: cumulative damage and protective effects. Brain Res 553(2):238–242

    Article  CAS  PubMed  Google Scholar 

  30. Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74(5):1124–1136

    Article  CAS  PubMed  Google Scholar 

  31. Zhao H (2013) Hurdles to clear before clinical translation of ischemic post conditioning against stroke. Transl Stroke Res 4(1):63–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Frank L, Yam J, Roberts RJ (1978) The role of endotoxin in protection of adult rats from oxygen-induced lung toxicity. J Clin Invest 61:269–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Brown JM, Grosso M, Terada LS et al (1989) Endotoxin pretreatment increases endogenous myocardial catalase activity and decreases ischemia-reperfusion injury of isolated rat hearts. Proc Natl Acad Sci U S A 86:2516–2520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. White CW, Ghezzi P, McMahon S et al (1989) Cytokines increase rat lung antioxidant enzymes during exposure to hyperoxia. J Appl Physiol 66(2):1003–1007

    Article  CAS  PubMed  Google Scholar 

  35. Lin H, Chang CP, Lin HJ, Lin MT, Tsai CC (2012) Attenuating brain edema, hippocampal oxidative stress, and cognitive dysfunction in rats using hyperbaric oxygen preconditioning during simulated high-altitude exposure. J Trauma Acute Care Surg 72(5):1220–1227

    Article  PubMed  Google Scholar 

  36. Shinkai M, Shinohia N, Kanoh S et al (2004) Oxygen stress effects proliferation rates and heat shock proteins in lymphocytes. Aviat Space Environ Med 75:109–113

    PubMed  Google Scholar 

  37. Frank L, Massaro D (1980) Oxygen toxicity. Am J Med 69(1):117–126

    Article  CAS  PubMed  Google Scholar 

  38. Clark JM, Lambertsen CJ, Gelfand R, Troxel AB (2006) Optimization of oxygen tolerance extension in rats by intermittent exposure. J Appl Physiol (1985) 100(3):869–879

    Google Scholar 

  39. Hendricks PL, Hall DA, Hunter WL Jr, Haley PJ (1977) Extension of pulmonary O2 tolerance in man at 2 ATA by intermittent O2 exposure. J Appl Physiol Respir Environ Exerc Physiol 42(4):593–599

    CAS  PubMed  Google Scholar 

  40. Godman CA et al (2010) Hyperbaric oxygen induces a cytoprotective and angiogenic response in human microvascular endothelial cells. Cell Stress Chaperones 15:431–442

    Article  CAS  PubMed  Google Scholar 

  41. Godman CA et al (2010) Hyperbaric oxygen treatment induces antioxidant gene expression. Ann N Y Acad Sci 1197:178–183

    Article  CAS  PubMed  Google Scholar 

  42. Chen MF, Chen HM, Ueng SW, Shyr MH (1998) Hyperbaric oxygen pretreatment attenuates hepatic reperfusion injury. Liver 18(2):110–116

    Article  CAS  PubMed  Google Scholar 

  43. Wada K, Ito M, Miyazawa T et al (1996) Repeated hyperbaric oxygen induces ischemic tolerance in gerbil hippocampus. Brain Res 740(1–2):15–20

    Article  CAS  PubMed  Google Scholar 

  44. Wang L, Li W, Kang Z et al (2009) Hyperbaric oxygen preconditioning attenuates early apoptosis after spinal cord ischemia in rats. J Neurotrauma 26(1):55–66

    Article  PubMed  Google Scholar 

  45. Sun L, Xie K, Zhang C et al (2014) Hyperbaric oxygen preconditioning attenuates postoperative cognitive impairment in aged rats. Neuroreport 25(9):718–724

    Article  CAS  PubMed  Google Scholar 

  46. Kim CH, Choi H, Chun YS et al (2001) Hyperbaric oxygenation pretreatment induces catalase and reduces infarct size in ischemic rat myocardium. Pflugers Arch 442(4):519–525

    Article  CAS  PubMed  Google Scholar 

  47. Kang N, Hai Y, Liang F et al (2014) Preconditioned hyperbaric oxygenation protects skin flap grafts in rats against ischemia/reperfusion injury. Mol Med Rep 9(6):2124–2130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cabigas BP, Su J, Hutchins W et al (2006) Hyperoxic and hyperbaric-induced cardioprotection: role of nitric oxide synthase 3. Cardiovasc Res 72(1):143–151

    Article  CAS  PubMed  Google Scholar 

  49. Dong H, Xiong L, Zhu Z et al (2002) Preconditioning with hyperbaric oxygen and hyperoxia induces tolerance against spinal cord ischemia in rabbits. Anesthesiology 96(4):907–912

    Article  PubMed  Google Scholar 

  50. Nie H, Xiong L, Lao N et al (2006) Hyperbaric oxygen preconditioning induces tolerance against spinal cord ischemia by upregulation of antioxidant enzymes in rabbits. J Cereb Blood Flow Metab 26(5):666–674

    Article  CAS  PubMed  Google Scholar 

  51. He X, Xu X, Fan M et al (2011) Preconditioning with hyperbaric oxygen induces tolerance against renal ischemia-reperfusion injury via increased expression of heme oxygenase-1. J Surg Res 170(2):e271–e277

    Article  CAS  PubMed  Google Scholar 

  52. Yamashita S, Hirata T, Mizukami Y et al (2009) Repeated preconditioning with hyperbaric oxygen induces neuroprotection against forebrain ischemia via suppression of p38 mitogen activated protein kinase. Brain Res 1301:171–179

    Article  CAS  PubMed  Google Scholar 

  53. Li Y, Dong H, Chen M et al (2011) Preconditioning with repeated hyperbaric oxygen induces myocardial and cerebral protection in patients undergoing coronary artery bypass graft surgery: a prospective, randomized, controlled clinical trial. J Cardiothorac Vasc Anesth 25(6):908–916

    Article  PubMed  Google Scholar 

  54. Yogaratnam JZ, Laden G, Guvendik L et al (2010) Hyperbaric oxygen preconditioning improves myocardial function, reduces length of intensive care stay, and limits complications post coronary artery bypass graft surgery. Cardiovasc Revasc Med 11(1):8–19

    Article  PubMed  Google Scholar 

  55. Jeysen ZY, Gerard L, Levant G et al (2011) Research report: the effects of hyperbaric oxygen preconditioning on myocardial biomarkers of cardioprotection in patients having coronary artery bypass graft surgery. Undersea Hyperb Med 38(3):175–185

    PubMed  Google Scholar 

  56. Alex J, Laden G, Cale AR et al (2005) Pretreatment with hyperbaric oxygen and its effect on neuropsychometric dysfunction and systemic inflammatory response after cardiopulmonary bypass: a prospective randomized double-blind trial. J Thorac Cardiovasc Surg 130(6):1623–1630

    Article  PubMed  Google Scholar 

  57. Huang G, Xu J, Xu L et al (2014) Hyperbaric oxygen preconditioning induces tolerance against oxidative injury and oxygen-glucose deprivation by up-regulating heat shock protein 32 in rat spinal neurons. PLoS One 9(1), e85967. doi:10.1371/journal.pone.0085967

    Article  PubMed  PubMed Central  Google Scholar 

  58. Yan W, Fang Z, Yang Q et al (2013) SirT1 mediates hyperbaric oxygen preconditioning-induced ischemic tolerance in rat brain. J Cereb Blood Flow Metab 33(3):396–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yan W, Zhang H, Bai X et al (2011) Autophagy activation is involved in neuroprotection induced by hyperbaric oxygen preconditioning against focal cerebral ischemia in rats. Brain Res 1402:109–121

    Article  CAS  PubMed  Google Scholar 

  60. Xu J, Huang G, Zhang K et al (2014) Nrf2 activation in astrocytes contributes to spinal cord ischemic tolerance induced by hyperbaric oxygen preconditioning. J Neurotrauma 31:1343–1353

    Article  PubMed  PubMed Central  Google Scholar 

  61. Peng Z, Ren P, Kang Z et al (2008) Up-regulated HIF-1alpha is involved in the hypoxic tolerance induced by hyperbaric oxygen preconditioning. Brain Res 1212:71–78

    Article  CAS  PubMed  Google Scholar 

  62. Gu GJ, Li YP, Peng ZY et al (2008) Mechanism of ischemic tolerance induced by hyperbaric oxygen preconditioning involves upregulation of hypoxia-inducible factor-1alpha and erythropoietin in rats. J Appl Physiol (1985) 104(4):1185–1191

    Google Scholar 

  63. Sun L, Wolferts G, Veltkamp R (2014) Oxygen therapy does not increase production and damage induced by reactive oxygen species in focal cerebral ischemia. Neurosci Lett 577:1–5

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Perdrizet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media, New York

About this paper

Cite this paper

Perdrizet, G.A. (2016). Preoperative Stress Conditioning in Humans: Is Oxygen the Drug of Choice?. In: Elwell, C.E., Leung, T.S., Harrison, D.K. (eds) Oxygen Transport to Tissue XXXVII. Advances in Experimental Medicine and Biology, vol 876. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3023-4_28

Download citation

Publish with us

Policies and ethics