Skip to main content

Abstract

Chapter 1 has shown us that the skeleton must withstand very high forces; because our muscles can only contract a small percentage of their length, we must amplify movements using levers that “spend rather than save forces,” as Borelli put it. In this chapter we begin to develop an understanding of how the biology of bone, cartilage and the other connective tissues provides tissues that can support these large forces day in and day out for a lifetime.

The human skeleton is a mechanically optimized biological system whose composition and organization reflect the functional demands made on it.

Thomas Einhorn (1992)

Nothing in biology makes sense except in the light of evolution.

Theodosius Dobzhansky (1973)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Osteoarthrosis is a term applied to joint degeneration that has a mechanical rather than a primary inflammatory cause. This condition is more commonly referred to as osteoarthritis, even though the “itis” in that term implies that inflammation is the initiating cause.

  2. 2.

    Recall Einstein’s famous question, “Does Zurich stop at this train?”

References

  • Ascenzi A, Bonucci E. The ultimate tensile strength of single osteons. Acta Anat. 1964;58:160–83.

    Article  CAS  PubMed  Google Scholar 

  • Ascenzi A, Bonucci E. The tensile properties of single osteons. Anat Rec. 1967;158:375–86.

    Article  CAS  PubMed  Google Scholar 

  • Ascenzi A, Bonucci E. The compressive properties of single osteons. Anat Rec. 1968;161:377–91.

    Article  CAS  PubMed  Google Scholar 

  • Ascenzi A, Bonucci E. The shearing properties of single osteons. Anat Rec. 1972;172:499–510.

    Article  CAS  PubMed  Google Scholar 

  • Ascenzi M-G, Reilly G. Bone tissue: hierarchical simulations for clinical applications. J Biomech. 2011;44:211–364.

    Article  PubMed  Google Scholar 

  • Ascenzi M-G, Fill J, Lomovtzev A. Orientation of collagen at the osteocyte lacunae in human secondary osteons. J Biomech. 2008;41:3425–35.

    Google Scholar 

  • Bailey AJ, Knott L. Molecular changes in bone collagen in osteoporosis and osteoarthritis in the elderly. Exp Gerontol. 1999;34:337–51.

    Article  CAS  PubMed  Google Scholar 

  • Bailey AJ, Wotton SF, Sims TJ, et al. Post-translational modifications in the collagen of human osteoporotic femoral head. Biochem Biophys Res Commun. 1992;185:801–5.

    Article  CAS  PubMed  Google Scholar 

  • Banse X, Sims TJ, Bailey AJ. Mechanical properties of adult vertebral cancellous bone: correlation with collagen intermolecular cross-links. J Bone Miner Res. 2002;17:1621–8.

    Article  CAS  PubMed  Google Scholar 

  • Benjamin M, Kaiser E, Milz S. Structure-function relationships in tendons: a review. J Anat. 2008;212:211–28.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bilezikian JP, Raisz LG, Rodan GA. Principles of bone biology. New York: Academic; 2002.

    Google Scholar 

  • Brandt KD, Doherty M, Lohmander LS. Osteoarthritis. Oxford: University Press; 2003.

    Google Scholar 

  • Buckwalter JA, Mankin HJ. Articular cartilage. Part I: tissue design and chondrocyte-matrix interactions. J Bone Joint Surg. 1997;79-A:600–11.

    Google Scholar 

  • Buehler MJ. Molecular nanomechanics of nascent bone: fibrillar toughening by mineralization. Nanotechnology. 2007;18:295102.

    Article  Google Scholar 

  • Burr DB, Schaffler MB, Fredrickson RG. Composition of the cement line and its possible mechanical role as a local interface in human compact bone. J Biomech. 1988;21:939–45.

    Article  CAS  PubMed  Google Scholar 

  • Carden A, Morris MD. Application of vibrational spectroscopy to the study of mineralized tissues. J Biomed Opt. 2000;5:259–68.

    Article  CAS  PubMed  Google Scholar 

  • Cetta G, Tenni R, Zanaboni G. Biochemical and morphological modifications in rabbit Achilles tendon during maturation and aging. J Biochem. 1982;204:61–7.

    Article  CAS  Google Scholar 

  • Ciarelli TE, Fyhrie DP, Parfitt AM. Effects of vertebral bone fragility and bone formation rate on the mineralization levels of cancellous bone from white females. Bone. 2003;32:311–5.

    Article  CAS  PubMed  Google Scholar 

  • Clancy WG, Narechania RG, Rosenberg TD. Anterior and posterior cruciate ligament reconstruction in rhesus monkeys: a histological, microangiographic, and biomechanical analysis. J Bone Joint Surg. 1981;63A:1270–84.

    Google Scholar 

  • Cohen J, Harris WH. The three-dimensional anatomy of Haversian systems. J Bone Joint Surg. 1958;40A:419–34.

    Google Scholar 

  • Cooper RR, Milgram JW, Robinson RA. Morphology of the osteon. J Bone Joint Surg. 1966;48A:1239–71.

    Google Scholar 

  • Currey JD. Three analogies to explain the mechanical properties of bone. Biorheology. 1964;2:1–10.

    Google Scholar 

  • Currey JD. The mechanical consequences of variation in the mineral content of bone. J Biomech. 1969a;2:1–11.

    Article  CAS  PubMed  Google Scholar 

  • Currey JD. The relationship between the stiffness and the mineral content of bone. J Biomech. 1969b;2:477–80.

    Article  CAS  PubMed  Google Scholar 

  • Currey JD. Incompatible mechanical properties in compact bone. J Theor Biol. 2004;231:569–80.

    Article  PubMed  Google Scholar 

  • Ding M, Dalstra M, Danielsen CC, et al. Age variations in the properties of human tibial trabecular bone. J Bone Joint Surg Br. 1997;79:995–1002.

    Article  CAS  PubMed  Google Scholar 

  • Donnelly E, Baker SP, Boskey AL, et al. Effects of surface roughness and maximum load on the mechanical properties of cancellous bone measured by nanoindentation. J Biomed Mater Res A. 2006;77:426–35.

    Article  PubMed Central  PubMed  Google Scholar 

  • Frank C, Woo S, Andriacchi T, Brand R, Oakes B, Dahners L, DeHaven K, Lewis J, Sabiston P. Normal ligament: structure, function, and composition. In: Woo SL-Y, Buckwalter JA, editors. Injury and repair of the musculoskeletal soft tissues. Park Ridge, IL: American Academy of Orthopaedic Surgeons; 1988. p. 45–128.

    Google Scholar 

  • Fratzl P, Roschger P, Eschberger J, et al. Abnormal bone mineralization after fluoride treatment in osteoporosis: a small angle X-ray-scattering study. J Bone Miner Res. 1994;9:1541–9.

    Article  CAS  PubMed  Google Scholar 

  • Fritsch A, Hellmich C, Dormieux L. Ductile sliding between mineral crystals followed by rupture of collagen crosslinks: experimentally supported micromechanical explanation of bone strength. J Theor Biol. 2009;260:230–52.

    Article  CAS  PubMed  Google Scholar 

  • Gao H, Ji B, Jager IL, et al. Materials become insensitive to flaws at nanoscale: lessons from nature. Proc Natl Acad Sci USA. 2003;100:5597–600.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Giraud-Guille MM. Twisted plywood architecture of collagen fibrils on human compact bone osteons. Calcif Tissue Int. 1988;42:167–80.

    Article  CAS  PubMed  Google Scholar 

  • Giri B, Tadano S, Fujisaki K, et al. Understanding site-specific residual strain and architecture in bovine cortical bone. J Biomech. 2008;41:3107–15.

    Article  PubMed  Google Scholar 

  • Gourion-Arsiquaud S, Faibish D, Myers E, et al. Use of FTIR spectroscopic imaging to identify parameters associated with fragility fracture. J Bone Miner Res. 2009;24:1565–71.

    Article  PubMed Central  PubMed  Google Scholar 

  • Gupta HS, Seto J, Wagermaier W, et al. Cooperative deformation of mineral and collagen in bone at the nanoscale. Proc Natl Acad Sci USA. 2006;103:17741–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Havers C. Osteologia nova, or some new observations of the bones, and the parts belonging to them, with the manner of their accretion, and nutrition, communicated to the royal society in several discourses. London: Samuel Smith; 1691.

    Google Scholar 

  • Hengsberger S, Kulik A, Zysset P. Nanoindentation discriminates the elastic properties of individual human bone lamellae under dry and physiological conditions. Bone. 2002;30:178–84.

    Article  CAS  PubMed  Google Scholar 

  • Hernandez CJ, Tang SY, Baumbach BM, et al. Trabecular microfracture and the influence of pyridinium and non-enzymatic glycation-mediated collagen cross-links. Bone. 2005;37:825–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hildebrand T, Laib A, Muller R, Dequeker J, Ruegsegger P. Direct three-dimensional morphometric analysis of human cancellous bone: microstructural data from spine, femur, iliac crest, and calcaneus. J Bone Miner Res. 1999;14:1167–74.

    Article  CAS  PubMed  Google Scholar 

  • Hochberg MC, Silman AJ, Smolen JS, Weinblatt ME, Weisman MH. Rheumatology, 2-volume set. 6th ed. Philadelphia: Mosby/Elsevier; 2015.

    Google Scholar 

  • Homminga J, McCreadie BR, Ciarelli TE, Weinans H, Goldstein SA, Huiskes R. Cancellous bone mechanical properties from normals and patients with hip fractures differ on the structure level, not on the bone hard tissue level. Bone. 2002;30:759–64.

    Article  CAS  PubMed  Google Scholar 

  • Horton WA. Morphology of connective tissue: cartilage. In: Royce PM, Steinman B, editors. Connective tissue and its heritable disorders. New York: Wiley-Liss; 1993.

    Google Scholar 

  • Hou FJ, Lang SM, Hoshaw SJ, Reimann DA, Fyhrie DP. Human vertebral body apparent and hard tissue stiffness. J Biomech. 1998;31:1009–15.

    Article  CAS  PubMed  Google Scholar 

  • Hu Y-Y, Liu XP, Ma X, Rawal A, Prozorov T, Akinc M, Mallapragada SK, Schmidt-Rohr K. Biomimetic self-assembling copolymer−hydroxyapatite nanocomposites with the nanocrystal size controlled by citrate. Chem Mater. 2011;23:2481–90.

    Article  CAS  Google Scholar 

  • Hunziker EB, Schenk RK, Cruz-Orive L-M. Quantitation of chondrocyte performance in growth-plate cartilage during longitudinal growth. J Bone Joint Surg. 1987;69-A:162–73.

    Google Scholar 

  • Jeanty P, Rodesch F, Delbeke D, Dumont JE. Estimation of gestational age from measurements of fetal long bones. J Ultrasound Med. 1984;3:75–9.

    CAS  PubMed  Google Scholar 

  • Johnson LC. The kinetics of skeletal remodeling. Birth Defects Orig Artic Ser. 1966;2:66–142.

    Google Scholar 

  • Jowsey J. Studies of Haversian systems in man and some animals. J Anat. 1966;100:857–64.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kastelic J, Baer E. Deformation in tendon and collagen. In: Vincent JFV, Currey JD, editors. The mechanical properties of biological materials. Cambridge: Cambridge University Press; 1980. p. 397–435.

    Google Scholar 

  • Keaveny TM, Guo XE, Wachtel EF, McMahon TA, Hayes WC. Trabecular bone exhibits fully linear elastic behavior and yields at low strain. J Biomech. 1994;27:1127–36.

    Article  CAS  PubMed  Google Scholar 

  • Kennedy OD, Herman BC, Laudier DM, Majeska RJ, Sun HB, Schaffler MB. Activation of resorption in fatigue-loaded bone involves both apoptosis and active pro-osteoclastogenic signaling by distinct osteocyte populations. Bone. 2012;50:1115–22.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kjaer M, Magnusson P, Krogsgaard M, Boysen Møller J, Olesen J, Heinemeier K, Hansen M, Haraldsson B, Koskinen S, Esmarck B, Langberg H. Extracellular matrix adaptation of tendon and skeletal muscle. J Anat. 2006;208:445–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lakes R, Saha S. Cement line motion in bone. Science. 1979;204:501–3.

    Article  CAS  PubMed  Google Scholar 

  • Lees S, Eyre DR, Barnard SM. BAPN dose dependence of mature crosslinking in bone matrix collagen of rabbit compact bone: corresponding variation of sonic velocity and equatorial diffraction spacing. Connect Tissue Res. 1990;24:95–105.

    Article  CAS  PubMed  Google Scholar 

  • Leung VYL, Gao B, Leung KKH, et al. SOX9 governs differentiation stage-specific gene expression in growth plate chondrocytes via direct concomitant transactivation and repression. PLoS Genet. 2011;7(11):1–16.

    Article  Google Scholar 

  • Marcus R, Feldman D, Kelsey J. Osteoporosis. New York: Academic; 1996.

    Google Scholar 

  • Martin RB, Pickett JC, Zinaich S. Studies of skeletal remodeling in aging men. Clin Orthop Relat Res. 1980;149:268–82.

    PubMed  Google Scholar 

  • Miller LM, Vairavamurthy V, Chance MR, et al. In situ analysis of mineral content and crystallinity in bone using infrared micro-spectroscopy of the nu(4)PO(4)(3-) vibration. Biochim Biophys Acta. 2001;1527:11–9.

    Article  CAS  PubMed  Google Scholar 

  • Mullender MG, van der Meer DD, Huiskes R, Lips P. Osteocyte density changes in aging and osteoporosis. Bone. 1996;18:109–13.

    Article  CAS  PubMed  Google Scholar 

  • Nakashima T, Hayashi M, Fukunaga T, et al. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat Med. 2011;17:1231–4.

    Article  CAS  PubMed  Google Scholar 

  • Neville AC. Cuticle: organization. In: Bereiter-Hahn J, Matoltsy AG, Richards KS, editors. Biology of the integument. I. Invertebrates. Berlin: Springer; 1984. p. 611–25.

    Chapter  Google Scholar 

  • Nyman JS, Ni Q, Nicolella DP, Wang X. Measurements of mobile and bound water by nuclear magnetic resonance correlate with mechanical properties of bone. Bone. 2008;42:193–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Olsen BR. New insights into the function of collagens from genetic analysis. Curr Biol. 1995;7:720–7.

    Article  CAS  Google Scholar 

  • Oxlund H, Mosekilde L, Ortoft G. Reduced concentration of collagen reducible cross links in human trabecular bone with respect to age and osteoporosis. Bone. 1996;19:479–84.

    Article  CAS  PubMed  Google Scholar 

  • Parfitt AM. Misconceptions (1): epiphyseal fusion causes cessation of growth. Bone. 2002;30:337–9.

    Article  CAS  PubMed  Google Scholar 

  • Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR. Bone histomorphometry: standardization of nomenclature, symbols, and units. J Bone Miner Res. 1987;2(6):595–610.

    Article  CAS  PubMed  Google Scholar 

  • Reddi AH, Anderson WA. Collagenous bone matrix-induced endochondral ossification and hemopoiesis. J Cell Biol. 1976;69:557–72.

    Article  CAS  PubMed  Google Scholar 

  • Reisinger AG, Pahr DH, Zysset PK. Elastic anisotropy of bone lamellae as a function of fibril orientation pattern. Biomech Model Mechanobiol. 2011;10:67–77.

    Article  PubMed  Google Scholar 

  • Rho JY, Tsui TY, Pharr GM. Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation. Biomaterials. 1997;18:1325–30.

    Article  CAS  PubMed  Google Scholar 

  • Robling AG, Niziolek PJ, Baldridge LA, et al. Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/Sclerostin. J Biol Chem. 2008;283:5866–75.

    Article  CAS  PubMed  Google Scholar 

  • Ruppel ME, Miller LM, Burr DB. The effect of the microscopic and nanoscale structure and bone fragility. Osteoporos Int. 2008;190:1251–65.

    Article  Google Scholar 

  • Russ JC, DeHoff RT. Practical stereology. 2nd ed. New York: Kluwer Academic/Plenum Publishers; 2000.

    Book  Google Scholar 

  • Schaffler MB, Burr DB, Frederickson RG. Morphology of the osteonal cement line in human bone. Anat Rec. 1987;217:223–8.

    Article  CAS  PubMed  Google Scholar 

  • Schulz RM, Bader A. Cartilage tissue engineering and bioreactor systems for the cultivation and stimulation of chondrocytes. Eur Biophys J. 2007;36(4).

    Google Scholar 

  • Shirazi R, Shirazi-Adl A, Hurtig M. Role of cartilage collagen fibrils networks in knee joint biomechanics under compression. J Biomech. 2008;41:3340–8.

    Article  CAS  PubMed  Google Scholar 

  • Simon SR. Orthopaedic basic science. Rosemont, IL: American Academy of Orthopaedic Surgeons; 1994.

    Google Scholar 

  • Sissons HA. Experimental study of the effect of radiation on bone growth. In: Mitchell JS, Holmes BF, Smith CL, editors. Progress in radiobiology. Edinburgh: Oliver and Boyd; 1955. p. 436–52.

    Google Scholar 

  • Skedros JG, Holmes JL, Vada EG, et al. Cement lines of secondary osteons in human bone are not mineral-deficient: new data in a historical perspective. Anat Rec A Discov Mol Cell Evol Biol. 2005;286:781–803.

    Article  PubMed  Google Scholar 

  • Stock SR, Yuan F, Brinson LC, Almer JD. Internal strain gradients quantified in bone under load using high-energy X-ray scattering. J Biomech. 2011;44:291–6.

    Article  CAS  PubMed  Google Scholar 

  • Stover SM, Pool RR, Martin RB, Morgan JP. Histological features of the dorsal cortex of the third metacarpal bone mid-diaphysis during postnatal growth in thoroughbred horses. J Anat. 1992;181:455–69.

    PubMed Central  PubMed  Google Scholar 

  • Tai K, Dao M, Suresh S, Palazoglu A, Ortiz C. Nanoscale heterogeneity promotes energy dissipation in bone. Nat Mater. 2007;6:454–62.

    Article  CAS  PubMed  Google Scholar 

  • Tatsumi S, Ishii K, Amizuka N, et al. Targeted ablation of osteocytes induces osteoporosis with defective mechanotransduction. Cell Metab. 2007;5:464–75.

    Article  CAS  PubMed  Google Scholar 

  • Tavassoli M, Yoffey JM. Bone marrow structure and function. New York: Liss; 1983.

    Google Scholar 

  • Wallace JM, Orr BG, Marini J, Banaszak Holl MM. Nanoscale morphology of type I collagen is altered in the Brtl mouse model of osteogenesis imperfect. J Struct Biol. 2011;173:146–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang X, Shen X, Li X, et al. Age-related changes in the collagen network and toughness of bone. Bone. 2002;31:1–7.

    Article  PubMed  Google Scholar 

  • Xiong J, Onal M, Jilka RL, et al. Matrix-embedded cells control osteoclast formation. Nat Med. 2011;17:1235–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xu J, Rho JY, Mishra SR, et al. Atomic force microscopy and nanoindentation characterization of human lamellar bone prepared by microtome sectioning and mechanical polishing technique. J Biomed Mater Res A. 2003;67:719–26.

    Article  CAS  PubMed  Google Scholar 

  • Zauel R, Yeni YN, Bay BK, Dong XN, Fyhrie DP. Comparison of the linear finite element prediction of deformation and strain of human cancellous bone to 3D digital volume correlation measurements. J Biomech Eng. 2006;128:1–6.

    Article  CAS  PubMed  Google Scholar 

  • Zioupos P, Currey JD, Hamer AJ. The role of collagen in the declining mechanical properties of aging human cortical bone. J Biomed Mater Res. 1999;45:108–16.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Martin, R.B., Burr, D.B., Sharkey, N.A., Fyhrie, D.P. (2015). Skeletal Biology. In: Skeletal Tissue Mechanics. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3002-9_2

Download citation

Publish with us

Policies and ethics