Skip to main content

Abstract

Immunity and metabolism serve two disparate primordial functions; however, millennia of enforced cooperation and coordination have resulted in their mutual integration, with both now indispensable to the function of the other. Immune responses direct metabolic programs at the cellular, tissue, and systemic levels, while metabolic programs not only provision but also influence and even, at times, initiate immune responses. Moreover, this relationship is highly stylized, with type 1 and type 2 immune responses closely linked with glycolytic and oxidative metabolic programs, respectively, across most physiologic contexts. Importantly, recognition of this comingled nature has opened new therapeutic avenues by which both immune and metabolic processes may be influenced by manipulations targeting either program. Indeed, such approaches have already demonstrated encouraging preclinical and early clinical results and promise to improve disease outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Odegaard JI, Chawla A. Pleiotropic actions of insulin resistance and inflammation in metabolic homeostasis. Science. 2013;339(6116):172–7. PubMed.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Okin D, Medzhitov R. Evolution of inflammatory diseases. Curr Biol. 2012;22(17):R733–40. PubMed.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature. 2001;414(6865):799–806. PubMed Epub 2001/12/14. eng.

    Article  CAS  PubMed  Google Scholar 

  4. Odegaard JI, Chawla A. The immune system as a sensor of the metabolic state. Immunity. 2013;38(4):644–54. PubMed.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Samuel VT, Shulman GI. Mechanisms for insulin resistance: common threads and missing links. Cell. 2012;148(5):852–71. PubMed Pubmed Central PMCID: 3294420. Epub 2012/03/06. eng.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Lin HV, Accili D. Hormonal regulation of hepatic glucose production in health and disease. Cell Metab. 2011;14(1):9–19. PubMed Pubmed Central PMCID: 3131084. Epub 2011/07/05. eng.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Thompson CB. Rethinking the regulation of cellular metabolism. Cold Spring Harb Symp Quant Biol. 2011;76:23–9. PubMed.

    Article  CAS  PubMed  Google Scholar 

  8. DeBerardinis RJ, Thompson CB. Cellular metabolism and disease: what do metabolic outliers teach us? Cell. 2012;148(6):1132–44. PubMed Pubmed Central PMCID: 3337773.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Fox CJ, Hammerman PS, Thompson CB. Fuel feeds function: energy metabolism and the T-cell response. Nat Rev Immunol. 2005;5(11):844–52. PubMed.

    Article  CAS  PubMed  Google Scholar 

  10. Ward PS, Thompson CB. Metabolic reprogramming: a cancer hallmark even Warburg did not anticipate. Cancer Cell. 2012;21(3):297–308. PubMed Pubmed Central PMCID: 3311998.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Pearce EL, Pearce EJ. Metabolic pathways in immune cell activation and quiescence. Immunity. 2013;38(4):633–43. PubMed Pubmed Central PMCID: 3654249.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Cramer T, Yamanishi Y, Clausen BE, Forster I, Pawlinski R, Mackman N, et al. HIF-1alpha is essential for myeloid cell-mediated inflammation. Cell. 2003;112(5):645–57. PubMed.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Fukuzumi M, Shinomiya H, Shimizu Y, Ohishi K, Utsumi S. Endotoxin-induced enhancement of glucose influx into murine peritoneal macrophages via GLUT1. Infect Immun. 1996;64(1):108–12. PubMed Pubmed Central PMCID: 173734.

    PubMed Central  CAS  PubMed  Google Scholar 

  14. Krawczyk CM, Holowka T, Sun J, Blagih J, Amiel E, DeBerardinis RJ, et al. Toll-like receptor-induced changes in glycolytic metabolism regulate dendritic cell activation. Blood. 2010;115(23):4742–9. PubMed Pubmed Central PMCID: 2890190. Epub 2010/03/31. eng.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Rodriguez-Prados JC, Traves PG, Cuenca J, Rico D, Aragones J, Martin-Sanz P, et al. Substrate fate in activated macrophages: a comparison between innate, classic, and alternative activation. J Immunol. 2010;185(1):605–14. PubMed.

    Article  CAS  PubMed  Google Scholar 

  16. Ruiz-Garcia A, Monsalve E, Novellasdemunt L, Navarro-Sabate A, Manzano A, Rivero S, et al. Cooperation of adenosine with macrophage Toll-4 receptor agonists leads to increased glycolytic flux through the enhanced expression of PFKFB3 gene. J Biol Chem. 2011;286(22):19247–58. PubMed Pubmed Central PMCID: 3103303.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Odegaard JI, Chawla A. Alternative macrophage activation and metabolism. Annu Rev Pathol. 2011;6:275–97. PubMed Epub 2010/11/03. eng.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Kang K, Reilly SM, Karabacak V, Gangl MR, Fitzgerald K, Hatano B, et al. Adipocyte-derived Th2 cytokines and myeloid PPARdelta regulate macrophage polarization and insulin sensitivity. Cell Metab. 2008;7(6):485–95. PubMed.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Odegaard JI, Ricardo-Gonzalez RR, Goforth MH, Morel CR, Subramanian V, Mukundan L, et al. Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature. 2007;447(7148):1116–20. PubMed.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Odegaard JI, Ricardo-Gonzalez RR, Red Eagle A, Vats D, Morel CR, Goforth MH, et al. Alternative M2 activation of Kupffer cells by PPARdelta ameliorates obesity-induced insulin resistance. Cell Metab. 2008;7(6):496–507. PubMed.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Vats D, Mukundan L, Odegaard JI, Zhang L, Smith KL, Morel CR, et al. Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation. Cell Metab. 2006;4(1):13–24. PubMed.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Thomas GD, Ruckerl D, Maskrey BH, Whitfield PD, Blaxter ML, Allen JE. The biology of nematode- and IL4Ralpha-dependent murine macrophage polarization in vivo as defined by RNA-Seq and targeted lipidomics. Blood. 2012;120(25):e93–104. PubMed.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006;444(7121):860–7.

    Article  CAS  PubMed  Google Scholar 

  24. Kanneganti TD, Dixit VD. Immunological complications of obesity. Nat Immunol. 2012;13(8):707–12. PubMed.

    Article  CAS  PubMed  Google Scholar 

  25. Osborn O, Olefsky JM. The cellular and signaling networks linking the immune system and metabolism in disease. Nat Med. 2012;18(3):363–74. PubMed.

    Article  CAS  PubMed  Google Scholar 

  26. Molofsky AB, Nussbaum JC, Liang HE, Van Dyken SJ, Cheng LE, Mohapatra A, et al. Innate lymphoid type 2 cells sustain visceral adipose tissue eosinophils and alternatively activated macrophages. J Exp Med. 2013;210(3):535–49. PubMed.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Zeyda M, Wernly B, Demyanets S, Kaun C, Hammerle M, Hantusch B, et al. Severe obesity increases adipose tissue expression of interleukin-33 and its receptor ST2, both predominantly detectable in endothelial cells of human adipose tissue. Int J Obes (Lond). 2013;37(5):658–65. PubMed.

    Article  CAS  Google Scholar 

  28. Wu D, Molofsky AB, Liang HE, Ricardo-Gonzalez RR, Jouihan HA, Bando JK, et al. Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science. 2011;332(6026):243–7. PubMed Pubmed Central PMCID: 3144160. Epub 2011/03/26. eng.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Bhargava P, Li C, Stanya KJ, Jacobi D, Dai L, Liu S, et al. Immunomodulatory glycan LNFPIII alleviates hepatosteatosis and insulin resistance through direct and indirect control of metabolic pathways. Nat Med. 2012;18(11):1665–72. PubMed Pubmed Central PMCID: 3493877.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Hotamisligil GS. Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell. 2010;140(6):900–17. PubMed Pubmed Central PMCID: 2887297. Epub 2010/03/23. eng.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Qatanani M, Lazar MA. Mechanisms of obesity-associated insulin resistance: many choices on the menu. Genes Dev. 2007;21(12):1443–55. PubMed.

    Article  CAS  PubMed  Google Scholar 

  32. Cinti S, Mitchell G, Barbatelli G, Murano I, Ceresi E, Faloia E, et al. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res. 2005;46(11):2347–55. PubMed.

    Article  CAS  PubMed  Google Scholar 

  33. Strissel KJ, Stancheva Z, Miyoshi H, Perfield 2nd JW, DeFuria J, Jick Z, et al. Adipocyte death, adipose tissue remodeling, and obesity complications. Diabetes. 2007;56(12):2910–8. PubMed Epub 2007/09/13. eng.

    Article  CAS  PubMed  Google Scholar 

  34. Arkan MC, Hevener AL, Greten FR, Maeda S, Li ZW, Long JM, et al. IKK-beta links inflammation to obesity-induced insulin resistance. Nat Med. 2005;11(2):191–8. PubMed.

    Article  CAS  PubMed  Google Scholar 

  35. Cai D, Yuan M, Frantz DF, Melendez PA, Hansen L, Lee J, et al. Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB. Nat Med. 2005;11(2):183–90. PubMed.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Hirosumi J, Tuncman G, Chang L, Gorgun CZ, Uysal KT, Maeda K, et al. A central role for JNK in obesity and insulin resistance. Nature. 2002;420(6913):333–6. PubMed.

    Article  CAS  PubMed  Google Scholar 

  37. Solinas G, Vilcu C, Neels JG, Bandyopadhyay GK, Luo JL, Naugler W, et al. JNK1 in hematopoietically derived cells contributes to diet-induced inflammation and insulin resistance without affecting obesity. Cell Metab. 2007;6(5):386–97. PubMed.

    Article  CAS  PubMed  Google Scholar 

  38. Han MS, Jung DY, Morel C, Lakhani SA, Kim JK, Flavell RA, et al. JNK expression by macrophages promotes obesity-induced insulin resistance and inflammation. Science. 2013;339(6116):218–22. PubMed.

    Article  CAS  PubMed  Google Scholar 

  39. Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest. 2007;117(1):175–84. PubMed.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Weisberg SP, Hunter D, Huber R, Lemieux J, Slaymaker S, Vaddi K, et al. CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J Clin Invest. 2006;116(1):115–24. PubMed.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante Jr AW. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003;112(12):1796–808. PubMed.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest. 2003;112(12):1821–30. PubMed.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Nishimura S, Manabe I, Nagasaki M, Eto K, Yamashita H, Ohsugi M, et al. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat Med. 2009;15(8):914–20. PubMed Epub 2009/07/28. eng.

    Article  CAS  PubMed  Google Scholar 

  44. Satoh M, Andoh Y, Clingan CS, Ogura H, Fujii S, Eshima K, et al. Type II NKT cells stimulate diet-induced obesity by mediating adipose tissue inflammation, steatohepatitis and insulin resistance. PLoS One. 2012;7(2):e30568. PubMed Pubmed Central PMCID: 3284453.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Winer S, Chan Y, Paltser G, Truong D, Tsui H, Bahrami J, et al. Normalization of obesity-associated insulin resistance through immunotherapy. Nat Med. 2009;15(8):921–9. PubMed Epub 2009/07/28. eng.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Winer DA, Winer S, Shen L, Wadia PP, Yantha J, Paltser G, et al. B cells promote insulin resistance through modulation of T cells and production of pathogenic IgG antibodies. Nat Med. 2011;17(5):610–7. PubMed Epub 2011/04/19. eng.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Mansuy-Aubert V, Zhou QL, Xie X, Gong Z, Huang JY, Khan AR, et al. Imbalance between neutrophil elastase and its inhibitor alpha1-antitrypsin in obesity alters insulin sensitivity, inflammation, and energy expenditure. Cell Metab. 2013;17(4):534–48. PubMed Pubmed Central PMCID: 3646573.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Talukdar S, Oh da Y, Bandyopadhyay G, Li D, Xu J, McNelis J, et al. Neutrophils mediate insulin resistance in mice fed a high-fat diet through secreted elastase. Nat Med. 2012;18(9):1407–12. PubMed Pubmed Central PMCID: 3491143. Epub 2012/08/07. eng.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Huang W, Metlakunta A, Dedousis N, Zhang P, Sipula I, Dube JJ, et al. Depletion of liver Kupffer cells prevents the development of diet-induced hepatic steatosis and insulin resistance. Diabetes. 2010;59(2):347–57. PubMed Pubmed Central PMCID: 2809951. Epub 2009/11/26. eng.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Papackova Z, Palenickova E, Dankova H, Zdychova J, Skop V, Kazdova L, et al. Kupffer cells ameliorate hepatic insulin resistance induced by high-fat diet rich in monounsaturated fatty acids: the evidence for the involvement of alternatively activated macrophages. Nutr Metab (Lond). 2012;9:22. PubMed Pubmed Central PMCID: 3348013.

    Article  CAS  Google Scholar 

  51. Stanya KJ, Jacobi D, Liu S, Bhargava P, Dai L, Gangl MR, et al. Direct control of hepatic glucose production by interleukin-13 in mice. J Clin Invest. 2013;123(1):261–71. PubMed Pubmed Central PMCID: 3533296.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Obstfeld AE, Sugaru E, Thearle M, Francisco AM, Gayet C, Ginsberg HN, et al. C-C chemokine receptor 2 (CCR2) regulates the hepatic recruitment of myeloid cells that promote obesity-induced hepatic steatosis. Diabetes. 2010;59(4):916–25. PubMed Pubmed Central PMCID: 2844839. Epub 2010/01/28. eng.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Cannon B, Nedergaard J. Nonshivering thermogenesis and its adequate measurement in metabolic studies. J Exp Biol. 2011;214(Pt 2):242–53. PubMed Epub 2010/12/24. eng.

    Article  PubMed  Google Scholar 

  54. Lowell BB, Spiegelman BM. Towards a molecular understanding of adaptive thermogenesis. Nature. 2000;404(6778):652–60. PubMed.

    CAS  PubMed  Google Scholar 

  55. Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, et al. Identification and importance of brown adipose tissue in adult humans. N Engl J Med. 2009;360(15):1509–17. PubMed Pubmed Central PMCID: 2859951. Epub 2009/04/10. eng.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND, et al. Cold-activated brown adipose tissue in healthy men. N Engl J Med. 2009;360(15):1500–8. PubMed Epub 2009/04/10.eng.

    Article  PubMed  Google Scholar 

  57. Saito M, Okamatsu-Ogura Y, Matsushita M, Watanabe K, Yoneshiro T, Nio-Kobayashi J, et al. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes. 2009;58(7):1526–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T, et al. Functional brown adipose tissue in healthy adults. N Engl J Med. 2009;360(15):1518–25. PubMed Epub 2009/04/10.eng.

    Article  CAS  PubMed  Google Scholar 

  59. Tseng YH, Cypess AM, Kahn CR. Cellular bioenergetics as a target for obesity therapy. Nat Rev Drug Discov. 2010;9(6):465–82. PubMed Pubmed Central PMCID: 2880836. Epub 2010/06/02. eng.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Nguyen KD, Qiu Y, Cui X, Goh YP, Mwangi J, David T, et al. Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis. Nature. 2011;480(7375):104–8. PubMed Epub 2011/11/22. eng.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Ohno H, Shinoda K, Spiegelman BM, Kajimura S. PPARgamma agonists induce a white-to-brown fat conversion through stabilization of PRDM16 protein. Cell Metab. 2012;15(3):395–404. PubMed Pubmed Central PMCID: 3410936.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. O’Neill LA, Hardie DG. Metabolism of inflammation limited by AMPK and pseudo-starvation. Nature. 2013;493(7432):346–55. PubMed.

    Article  PubMed  Google Scholar 

  63. Kopp E, Ghosh S. Inhibition of NF-kappa B by sodium salicylate and aspirin. Science. 1994;265(5174):956–9. PubMed Epub 1994/08/12. eng.

    Article  CAS  PubMed  Google Scholar 

  64. Reid J, Macdougall AI, Andrews MM. Aspirin and diabetes mellitus. Br Med J. 1957;2(5053):1071–4. PubMed Pubmed Central PMCID: 1962733. Epub 1957/11/09. eng.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Williamson RT. On the treatment of glycosuria and diabetes mellitus with sodium salicylate. Br Med J. 1901;1:760–2.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Yin MJ, Yamamoto Y, Gaynor RB. The anti-inflammatory agents aspirin and salicylate inhibit the activity of I(kappa)B kinase-beta. Nature. 1998;396(6706):77–80. PubMed Epub 1998/11/17. eng.

    Article  CAS  PubMed  Google Scholar 

  67. Goldfine AB, Conlin PR, Halperin F, Koska J, Permana P, Schwenke D, et al. A randomised trial of salsalate for insulin resistance and cardiovascular risk factors in persons with abnormal glucose tolerance. Diabetologia. 2013;56(4):714–23. PubMed.

    Article  CAS  PubMed  Google Scholar 

  68. Goldfine AB, Fonseca V, Jablonski KA, Pyle L, Staten MA, Shoelson SE, et al. The effects of salsalate on glycemic control in patients with type 2 diabetes: a randomized trial. Ann Intern Med. 2010;152(6):346–57. PubMed Pubmed Central PMCID: 3138470.

    Article  PubMed Central  PubMed  Google Scholar 

  69. Mandrup-Poulsen T, Pickersgill L, Donath MY. Blockade of interleukin 1 in type 1 diabetes mellitus. Nat Rev Endocrinol. 2010;6(3):158–66. PubMed Epub 2010/02/23. eng.

    Article  CAS  PubMed  Google Scholar 

  70. Reilly SM, Chiang SH, Decker SJ, Chang L, Uhm M, Larsen MJ, et al. An inhibitor of the protein kinases TBK1 and IKK-varepsilon improves obesity-related metabolic dysfunctions in mice. Nat Med. 2013;19(3):313–21. PubMed.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Youssef S, Stuve O, Patarroyo JC, Ruiz PJ, Radosevich JL, Hur EM, et al. The HMG-CoA reductase inhibitor, atorvastatin, promotes a Th2 bias and reverses paralysis in central nervous system autoimmune disease. Nature. 2002;420(6911):78–84. PubMed.

    Article  CAS  PubMed  Google Scholar 

  72. Arora M, Chen L, Paglia M, Gallagher I, Allen JE, Vyas YM, et al. Simvastatin promotes Th2-type responses through the induction of the chitinase family member Ym1 in dendritic cells. Proc Natl Acad Sci U S A. 2006;103(20):7777–82. PubMed Pubmed Central PMCID: 1472521. Epub 2006/05/10. eng.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Mathur N, Pedersen BK. Exercise as a mean to control low-grade systemic inflammation. Mediators Inflamm. 2008;2008:109502. PubMed Pubmed Central PMCID: 2615833. Epub 2009/01/17. eng.

    Article  PubMed Central  PubMed  Google Scholar 

  74. Ploeger HE, Takken T, de Greef MH, Timmons BW. The effects of acute and chronic exercise on inflammatory markers in children and adults with a chronic inflammatory disease: a systematic review. Exerc Immunol Rev. 2009;15:6–41. PubMed Epub 2009/12/05. eng.

    PubMed  Google Scholar 

  75. Liou AP, Paziuk M, Luevano Jr JM, Machineni S, Turnbaugh PJ, Kaplan LM. Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Sci Transl Med. 2013;5(178):178ra41. PubMed Pubmed Central PMCID: 3652229.

    Article  PubMed Central  PubMed  Google Scholar 

  76. Zhao G, Zhou S, Davie A, Su Q. Effects of moderate and high intensity exercise on T1/T2 balance. Exerc Immunol Rev. 2012;18:98–114. PubMed.

    PubMed  Google Scholar 

  77. Chen Y, Lu J, Huang Y, Wang T, Xu Y, Xu M, et al. Association of previous schistosome infection with diabetes and metabolic syndrome: a cross-sectional study in rural China. J Clin Endocrinol Metab. 2013;98(2):283–7. PubMed.

    Article  Google Scholar 

  78. Smith P, Mangan NE, Walsh CM, Fallon RE, McKenzie AN, van Rooijen N, et al. Infection with a helminth parasite prevents experimental colitis via a macrophage-mediated mechanism. J Immunol. 2007;178(7):4557–66. PubMed.

    Article  CAS  PubMed  Google Scholar 

  79. Xia CM, Zhao Y, Jiang L, Jiang J, Zhang SC. Schistosoma japonicum ova maintains epithelial barrier function during experimental colitis. World J Gastroenterol. 2011;17(43):4810–6. PubMed Pubmed Central PMCID: 3229631.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Larsen N, Vogensen FK, van den Berg FW, Nielsen DS, Andreasen AS, Pedersen BK, et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One. 2010;5(2):e9085. PubMed Pubmed Central PMCID: 2816710.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The author’s work was supported by grants from: NIH (HL076746, DK094641), Diabetes Family Fund (UCSF), AHA Innovative Award (12PILT11840038) and an NIH Director’s Pioneer Award (DP1AR064158) to A.C. P.R. was supported in part by T32 grant (DK007161). The authors declare that they have no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay Chawla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Prahalad, P., Odegaard, J.I., Chawla, A. (2016). Type 2 Immunity and Metabolism. In: Gause, W., Artis, D. (eds) The Th2 Type Immune Response in Health and Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2911-5_9

Download citation

Publish with us

Policies and ethics