Skip to main content

Abstract

CD4 Th2 lymfocytes producing IL-4, IL-5 and IL-13 are common controllers of type 2 immunity. They respond to allergens and helminthes only when antigen is presented by professional antigen presenting cells like dendritic cells. Dendritic cells express many pattern recognition receptors that can be triggered by type 2 antigens, leading to direct DC activation and Th2 polarization. Alternatively, type 2 stimuli can first trigger barrier epithelial cells that subsequently activate the DCs via release of TSLP, IL-33 and IL-25. It is clear now that also other innate immune cells involved in type 2 immunity such as basophils and ILC2s help DCs to polarize CD4 T cells towards the Th2 direction. In addition to the roles of DCs in priming CD4 Th2 responses, they also control recall responses of memory CD4 Th2 cells to allergens, identifying these cells as important targets for intervention in allergic inflammatory diseases like asthma, dermatitis and rhinitis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guilliams M, Lambrecht BN, Hammad H. Division of labor between lung dendritic cells and macrophages in the defense against pulmonary infections. Mucosal Immunol. 2013;6(3):464–73.

    Article  CAS  PubMed  Google Scholar 

  2. Jung S, Unutmaz D, Wong P, Sano G, De los Santos K, Sparwasser T, Wu S, Vuthoori S, Ko K, Zavala F, Pamer EG, et al. In vivo depletion of CD11c(+) dendritic cells abrogates priming of CD8(+) T cells by exogenous cell-associated antigens. Immunity. 2002;17(2):211–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. GeurtsvanKessel CH, Willart MA, van Rijt LS, Muskens F, Kool M, Baas C, Thielemans K, Bennett C, Clausen BE, Hoogsteden HC, Osterhaus AD, et al. Clearance of influenza virus from the lung depends on migratory langerin+Cd11b− but not plasmacytoid dendritic cells. J Exp Med. 2008;205(7):1621–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Pulendran B, Artis D. New paradigms in type 2 immunity. Science. 2012;337(6093):431–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Kool M, Hammad H, Lambrecht BN. Cellular networks controlling Th2 polarization in allergy and immunity. F1000 Biol Rep. 2012;4:6.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Lambrecht BN, Hammad H. Lung dendritic cells in respiratory viral infection and asthma: from protection to immunopathology. Ann Rev Immunol. 2012;30:243–70.

    Article  CAS  Google Scholar 

  7. Akdis CA. Therapies for allergic inflammation: refining strategies to induce tolerance. Nat Med. 2012;18(5):736–49.

    Article  CAS  PubMed  Google Scholar 

  8. Weiss JM, Bilate AM, Gobert M, Ding Y, Curotto de Lafaille MA, Parkhurst CN, Xiong H, Dolpady J, Frey AB, Ruocco MG, Yang Y, et al. Neuropilin 1 is expressed on thymus-derived natural regulatory T cells, but not mucosa-generated induced Foxp3+ T reg cells. J Exp Med. 2012;209(10):1723–42. S1721.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Soroosh P, Doherty TA, Duan W, Mehta AK, Choi H, Adams YF, Mikulski Z, Khorram N, Rosenthal P, Broide DH, Croft M. Lung-resident tissue macrophages generate Foxp3+ regulatory T cells and promote airway tolerance. J Exp Med. 2013;210(4):775–88.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Tang H, Cao W, Kasturi SP, Ravindran R, Nakaya HI, Kundu K, Murthy N, Kepler TB, Malissen B, Pulendran B. The T helper type 2 response to cysteine proteases requires dendritic cell-basophil cooperation via ROS-mediated signaling. Nat Immunol. 2010;11:608–17. doi:10.1038/ni.1883.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Kumamoto Y, Linehan M, Weinstein JS, Laidlaw BJ, Craft JE, Iwasaki A. CD301B+ dermal dendritic cells drive T helper 2 cell-mediated immunity. Immunity. 2013;39:733–43.

    Article  CAS  PubMed  Google Scholar 

  12. Gao Y, Nish SA, Jiang R, Hou L, Licona-Limon P, Weinstein JS, Zhao H, Medzhitov R. Control of T helper 2 responses by transcription factor IRF4-dependent dendritic cells. Immunity. 2013;39:722–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Akdis M, Verhagen J, Taylor A, Karamloo F, Karagiannidis C, Crameri R, Thunberg S, Deniz G, Valenta R, Fiebig H, Kegel C, et al. Immune responses in healthy and allergic individuals are characterized by a fine balance between allergen-specific T regulatory 1 and T helper 2 cells. J Exp Med. 2004;199(11):1567–75.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Karlsson MR, Rugtveit J, Brandtzaeg P. Allergen-responsive Cd4+Cd25+ regulatory T cells in children who have outgrown cow’s milk allergy. J Exp Med. 2004;199(12):1679–88.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Lloyd CM, Hessel EM. Functions of T cells in asthma: more than just T(h)2 cells. Nat Rev Immunol. 2010;10(12):838–48.

    Article  CAS  PubMed  Google Scholar 

  16. Schuijs MJ, Willart MA, Hammad H, Lambrecht BN. Cytokine targets in airway inflammation. Curr Opin Pharmacol. 2013;13(3):351–61.

    Article  CAS  PubMed  Google Scholar 

  17. Klein Wolterink RG, Kleinjan A, van Nimwegen M, Bergen I, de Bruijn M, Levani Y, Hendriks RW. Pulmonary innate lymphoid cells are major producers of IL-5 and IL-13 in murine models of allergic asthma. Eur J Immunol. 2012;42(5):1106–16.

    Article  PubMed  CAS  Google Scholar 

  18. Hardman CS, Panova V, McKenzie AN. IL-33 citrine reporter mice reveal the temporal and spatial expression of IL-33 during allergic lung inflammation. Eur J Immunol. 2012;43(2):488–98.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Halim TY, Krauss RH, Sun AC, Takei F. Lung natural helper cells are a critical source of Th2 cell-type cytokines in protease allergen-induced airway inflammation. Immunity. 2012;36(3):451–63.

    Article  CAS  PubMed  Google Scholar 

  20. Zhao J, Lloyd CM, Noble A. Th17 responses in chronic allergic airway inflammation abrogate regulatory T-cell-mediated tolerance and contribute to airway remodeling. Mucosal Immunol. 2013;6(2):335–46.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Kerzerho J, Maazi H, Speak AO, Szely N, Lombardi V, Khoo B, Geryak S, Lam J, Soroosh P, Van Snick J, Akbari O. Programmed cell death ligand 2 regulates T(h)9 differentiation and induction of chronic airway hyperreactivity. J Allergy Clin Immunol. 2012. doi:10.1016/j.jaci.2012.1009.1027.

    PubMed Central  PubMed  Google Scholar 

  22. Wilhelm C, Hirota K, Stieglitz B, Van Snick J, Tolaini M, Lahl K, Sparwasser T, Helmby H, Stockinger B. An IL-9 fate reporter demonstrates the induction of an innate IL-9 response in lung inflammation. Nat Immunol. 2011;12(11):1071–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Vermaelen KY, Carro-Muino I, Lambrecht BN, Pauwels RA. Specific migratory dendritic cells rapidly transport antigen from the airways to the thoracic lymph nodes. J Exp Med. 2001;193(1):51–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Holt PG, Schon-Hegrad MA, Oliver J, Holt BJ, McMenamin PG. A contiguous network of dendritic antigen-presenting cells within the respiratory epithelium. Int Arch Allergy Appl Immunol. 1990;91:155–9.

    Article  CAS  PubMed  Google Scholar 

  25. Hammad H, Chieppa M, Perros F, Willart MA, Germain RN, Lambrecht BN. House dust mite allergen induces asthma via toll-like receptor 4 triggering of airway structural cells. Nat Med. 2009;15(4):410–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Nguyen Hoang AT, Chen P, Juarez J, Sachamitr P, Billing B, Bosnjak L, Dahlen B, Coles M, Svensson M. Dendritic cell functional properties in a three-dimensional tissue model of human lung mucosa. Am J Physiol Lung Cell Mol Physiol. 2012;302(2):L226–37.

    Article  PubMed  CAS  Google Scholar 

  27. Farache J, Koren I, Milo I, Gurevich I, Kim KW, Zigmond E, Furtado GC, Lira SA, Shakhar G. Luminal bacteria recruit Cd103+ dendritic cells into the intestinal epithelium to sample bacterial antigens for presentation. Immunity. 2013;38(3):581–95.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Kubo A, Nagao K, Yokouchi M, Sasaki H, Amagai M. External antigen uptake by Langerhans cells with reorganization of epidermal tight junction barriers. J Exp Med. 2009;206(13):2937–46.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Chieppa M, Rescigno M, Huang AY, Germain RN. Dynamic imaging of dendritic cell extension into the small bowel lumen in response to epithelial cell TLR engagement. J Exp Med. 2006;203(13):2841–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Sung SS, Fu SM, Rose Jr CE, Gaskin F, Ju ST, Beaty SR. A major lung CD103 (alphaE)-beta7 integrin-positive epithelial dendritic cell population expressing Langerin and tight junction proteins. J Immunol. 2006;176(4):2161–72.

    Article  CAS  PubMed  Google Scholar 

  31. Blank F, Wehrli M, Lehmann A, Baum O, Gehr P, von Garnier C, Rothen-Rutishauser BM. Macrophages and dendritic cells express tight junction proteins and exchange particles in an in vitro model of the human airway wall. Immunobiology. 2011;216(1-2):86–95.

    Article  CAS  PubMed  Google Scholar 

  32. Thornton EE, Looney MR, Bose O, Sen D, Sheppard D, Locksley R, Huang X, Krummel MF. Spatiotemporally separated antigen uptake by alveolar dendritic cells and airway presentation to T cells in the lung. J Exp Med. 2012;209(6):1183–99.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Lambrecht BN, De Veerman M, Coyle AJ, Gutierrez-Ramos JC, Thielemans K, Pauwels RA. Myeloid dendritic cells induce Th2 responses to inhaled antigen, leading to eosinophilic airway inflammation. J Clin Invest. 2000;106(4):551–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Raymond M, Van VQ, Wakahara K, Rubio M, Sarfati M. Lung dendritic cells induce T(H)17 cells that produce T(H)2 cytokines, express GATA-3, and promote airway inflammation. J Allergy Clin Immunol. 2011;128(1):192–201. e196.

    Article  CAS  PubMed  Google Scholar 

  35. van Rijt LS, Vos N, Willart M, Muskens F, Tak PP, van der Horst C, Hoogsteden HC, Lambrecht BN. Persistent activation of dendritic cells after resolution of allergic airway inflammation breaks tolerance to inhaled allergens in mice. Am J Respir Crit Care Med. 2011;184(3):303–11.

    Article  PubMed  Google Scholar 

  36. Krishnamoorthy N, Oriss TB, Paglia M, Fei M, Yarlagadda M, Vanhaesebroeck B, Ray A, Ray P. Activation of C-kit in dendritic cells regulates T helper cell differentiation and allergic asthma. Nat Med. 2008;14(5):565–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Plantinga M, Guilliams M, Vanheerswynghels M, Deswarte K, Branco-Madeira F, Toussaint W, Vanhoutte L, Neyt K, Killeen N, Malissen B, Hammad H, et al. Conventional and monocyte-derived CD11b(+) dendritic cells initiate and maintain T helper 2 cell-mediated immunity to house dust mite allergen. Immunity. 2013;38(2):322–35.

    Article  CAS  PubMed  Google Scholar 

  38. Hammad H, Plantinga M, Deswarte K, Pouliot P, Willart MA, Kool M, Muskens F, Lambrecht BN. Inflammatory dendritic cells—not basophils—are necessary and sufficient for induction of Th2 immunity to inhaled house dust mite allergen. J Exp Med. 2010;207(10):2097–111.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Phythian-Adams AT, Cook PC, Lundie RJ, Jones LH, Smith KA, Barr TA, Hochweller K, Anderton SM, Hammerling GJ, Maizels RM, MacDonald AS. CD11c depletion severely disrupts Th2 induction and development in vivo. J Exp Med. 2010;207(10):2089–96.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Smith KA, Harcus Y, Garbi N, Hammerling GJ, MacDonald AS, Maizels RM. Type 2 innate immunity in helminth infection is induced redundantly and acts autonomously following CD11c(+) cell depletion. Infect Immun. 2012;80(10):3481–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Yoshimoto T, Yasuda K, Tanaka H, Nakahira M, Imai Y, Fujimori Y, Nakanishi K. Basophils contribute to T(H)2-IgE responses in vivo via IL-4 production and presentation of peptide-MHC class II complexes to CD4+ T cells. Nat Immunol. 2009;10(7):706–12.

    Article  CAS  PubMed  Google Scholar 

  42. Sokol CL, Chu NQ, Yu S, Nish SA, Laufer TM, Medzhitov R. Basophils function as antigen-presenting cells for an allergen-induced T helper type 2 response. Nat Immunol. 2009;10(7):713–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Perrigoue JG, Saenz SA, Siracusa MC, Allenspach EJ, Taylor BC, Giacomin PR, Nair MG, Du Y, Zaph C, van Rooijen N, Comeau MR, et al. MHC class II-dependent basophil-CD4+ T cell interactions promote T(H)2 cytokine-dependent immunity. Nat Immunol. 2009;10(7):697–705.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Sharma M, Hegde P, Aimanianda V, Beau R, Senechal H, Poncet P, Latge JP, Kaveri SV, Bayry J. Circulating human basophils lack the features of professional antigen presenting cells. Sci Rep. 2013;3:1188.

    PubMed Central  PubMed  Google Scholar 

  45. Otsuka A, Nakajima S, Kubo M, Egawa G, Honda T, Kitoh A, Nomura T, Hanakawa S, Sagita Moniaga C, Kim B, Matsuoka S, et al. Basophils are required for the induction of Th2 immunity to haptens and peptide antigens. Nat Commun. 2013;4:1739.

    Article  PubMed  CAS  Google Scholar 

  46. van Rijt LS, Vos N, Hijdra D, de Vries VC, Hoogsteden HC, Lambrecht BN. Airway eosinophils accumulate in the mediastinal lymph nodes but lack antigen-presenting potential for naive T cells. J Immunol. 2003;171(7):3372–8.

    Article  PubMed  Google Scholar 

  47. Wang HB, Ghiran I, Matthaei K, Weller PF. Airway eosinophils: allergic inflammation recruited professional antigen-presenting cells. J Immunol. 2007;179(11):7585–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Merad M, Sathe P, Helft J, Miller J, Mortha A. The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu Rev Immunol. 2013;31:563–604.

    Article  CAS  PubMed  Google Scholar 

  49. Desch AN, Randolph GJ, Murphy KM, Gautier E, Kedl R, Lahoud M, Caminschi I, Shortman K, Henson PM, Jakubzick CV. Efferocytic CD103+ pulmonary dendritic cells selectively acquire and present apoptotic cell-associated antigen. J Exp Med. 2011;208:1789–97.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Segura E, Touzot M, Bohineust A, Cappuccio A, Chiocchia G, Hosmalin A, Dalod M, Soumelis V, Amigorena S. Human inflammatory dendritic cells induce Th17 cell differentiation. Immunity. 2013;38(2):336–48.

    Article  CAS  PubMed  Google Scholar 

  51. Furuhashi K, Suda T, Hasegawa H, Suzuki Y, Hashimoto D, Enomoto N, Fujisawa T, Nakamura Y, Inui N, Shibata K, Nakamura H, et al. Mouse lung CD103+ and CD11b high dendritic cells preferentially induce distinct CD4+ T-cell responses. Am J Respir Cell Mol Biol. 2012;46(2):165–72.

    Article  CAS  PubMed  Google Scholar 

  52. Gautier EL, Shay T, Miller J, Greter M, Jakubzick C, Ivanov S, Helft J, Chow A, Elpek KG, Gordonov S, Mazloom AR, et al. Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat Immunol. 2012;13(11):1118–28.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Semmrich M, Plantinga M, Svensson-Frej M, Uronen-Hansson H, Gustafsson T, Mowat AM, Yrlid U, Lambrecht BN, Agace WW. Directed antigen targeting in vivo identifies a role for CD103+ dendritic cells in both tolerogenic and immunogenic T-cell responses. Mucosal Immunol. 2012;5(2):150–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Khare A, Krishnamoorthy N, Oriss TB, Fei M, Ray P, Ray A. Cutting edge: inhaled antigen upregulates retinaldehyde dehydrogenase in lung CD103+ but not plasmacytoid dendritic cells to induce Foxp3 de novo in CD4+ T cells and promote airway tolerance. J Immunol. 2013;191(1):25–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Takagi T, Taguchi O, Toda M, Ruiz DB, Bernabe PG, D’Alessandro-Gabazza CN, Miyake Y, Kobayashi T, Aoki S, Chiba F, Yano Y, et al. Inhibition of allergic bronchial asthma by thrombomodulin is mediated by dendritic cells. Am J Respir Crit Care Med. 2011;183(1):31–42.

    Article  CAS  PubMed  Google Scholar 

  56. Mesnil C, Sabatel CM, Marichal T, Toussaint M, Cataldo D, Drion PV, Lekeux P, Bureau F, Desmet CJ. Resident cd11b(+)ly6c(−) lung dendritic cells are responsible for allergic airway sensitization to house dust mite in mice. PLoS One. 2012;7(12):e53242.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Williams JW, Tjota MY, Clay BS, Vander Lugt B, Bandukwala HS, Hrusch CL, Decker DC, Blaine KM, Fixsen BR, Singh H, Sciammas R, et al. Transcription factor IRF4 drives dendritic cells to promote Th2 differentiation. Nat Commun. 2013;4:2990.

    PubMed Central  PubMed  Google Scholar 

  58. Murakami R, Denda-Nagai K, Hashimoto S, Nagai S, Hattori M, Irimura T. A unique dermal dendritic cell subset that skews the immune response toward th2. PLoS One. 2013;8(9). e73270.

    Google Scholar 

  59. van Rijt LS, Jung S, Kleinjan A, Vos N, Willart M, Duez C, Hoogsteden HC, Lambrecht BN. In vivo depletion of lung CD11c+ dendritic cells during allergen challenge abrogates the characteristic features of asthma. J Exp Med. 2005;201(6):981–91.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  60. Lambrecht BN, Salomon B, Klatzmann D, Pauwels RA. Dendritic cells are required for the development of chronic eosinophilic airway inflammation in response to inhaled antigen in sensitized mice. J Immunol. 1998;160(8):4090–7.

    CAS  PubMed  Google Scholar 

  61. Huh JC, Strickland DH, Jahnsen FL, Turner DJ, Thomas JA, Napoli S, Tobagus I, Stumbles PA, Sly PD, Holt PG. Bidirectional interactions between antigen-bearing respiratory tract dendritic cells (DCs) and T cells precede the late phase reaction in experimental asthma: Dc activation occurs in the airway mucosa but not in the lung parenchyma. J Exp Med. 2003;198(1):19–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Medoff BD, Seung E, Hong S, Thomas SY, Sandall BP, Duffield JS, Kuperman DA, Erle DJ, Luster AD. CD11b+ myeloid cells are the key mediators of Th2 cell homing into the airway in allergic inflammation. J Immunol. 2009;182(1):623–35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Sallmann E, Reininger B, Brandt S, Duschek N, Hoflehner E, Garner-Spitzer E, Platzer B, Dehlink E, Hammer M, Holcmann M, Oettgen HC, et al. High-affinity IgE receptors on dendritic cells exacerbate Th2-dependent inflammation. J Immunol. 2011;187(1):164–71.

    Article  CAS  PubMed  Google Scholar 

  64. Tjota MY, Williams JW, Lu T, Clay BS, Byrd T, Hrusch CL, Decker DC, de Araujo CA, Bryce PJ, Sperling AI. IL-33-dependent induction of allergic lung inflammation by FcgammaRIII signaling. J Clin Invest. 2013;123(5):2287–97.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Nakano H, Burgents JE, Nakano K, Whitehead GS, Cheong C, Bortner CD, Cook DN. Migratory properties of pulmonary dendritic cells are determined by their developmental lineage. Mucosal Immunol. 2013;6(4):678–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Gregory LG, Lloyd CM. Orchestrating house dust mite-associated allergy in the lung. Trends Immunol. 2011;32(9):402–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Wills-Karp M. Allergen-specific pattern recognition receptor pathways. Curr Opin Immunol. 2010;22(6):777–82.

    Article  CAS  PubMed  Google Scholar 

  68. Emara M, Royer PJ, Mahdavi J, Shakib F, Ghaemmaghami AM. Retagging identifies dendritic cell-specific intercellular adhesion molecule-3 (ICAM3)-grabbing non-integrin (DC-SIGN) protein as a novel receptor for a major allergen from house dust mite. J Biol Chem. 2012;287(8):5756–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Shreffler WG, Castro RR, Kucuk ZY, Charlop-Powers Z, Grishina G, Yoo S, Burks AW, Sampson HA. The major glycoprotein allergen from Arachis hypogaea, Ara h 1, is a ligand of dendritic cell-specific ICAM-grabbing nonintegrin and acts as a Th2 adjuvant in vitro. J Immunol. 2006;177(6):3677–85.

    Article  CAS  PubMed  Google Scholar 

  70. Royer PJ, Emara M, Yang C, Al-Ghouleh A, Tighe P, Jones N, Sewell HF, Shakib F, Martinez-Pomares L, Ghaemmaghami AM. The mannose receptor mediates the uptake of diverse native allergens by dendritic cells and determines allergen-induced T cell polarization through modulation of IDO activity. J Immunol. 2010;185(3):1522–31.

    Article  CAS  PubMed  Google Scholar 

  71. Trompette A, Divanovic S, Visintin A, Blanchard C, Hegde RS, Madan R, Thorne PS, Wills-Karp M, Gioannini TL, Weiss JP, Karp CL. Allergenicity resulting from functional mimicry of a toll-like receptor complex protein. Nature. 2009;457(7229):585–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Steinfelder S, Andersen JF, Cannons JL, Feng CG, Joshi M, Dwyer D, Caspar P, Schwartzberg PL, Sher A, Jankovic D. The major component in schistosome eggs responsible for conditioning dendritic cells for Th2 polarization is a T2 ribonuclease (omega-1). J Exp Med. 2009;206(8):1681–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Everts B, Hussaarts L, Driessen NN, Meevissen MH, Schramm G, van der Ham AJ, van der Hoeven B, Scholzen T, Burgdorf S, Mohrs M, Pearce EJ, et al. Schistosome-derived omega-1 drives th2 polarization by suppressing protein synthesis following internalization by the mannose receptor. J Exp Med. 2012;209(10):1753–67. S1751.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Jeong HW, Kim JH, Kim JY, Ha SJ, Kong YY. Mind bomb-1 in dendritic cells is specifically required for notch-mediated T helper type 2 differentiation. PLoS One. 2012;7(4):e36359.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Tan AM, Chen HC, Pochard P, Eisenbarth SC, Herrick CA, Bottomly HK. Tlr4 signaling in stromal cells is critical for the initiation of allergic Th2 responses to inhaled antigen. J Immunol. 2010;184(7):3535–44.

    Article  CAS  PubMed  Google Scholar 

  76. Leon B, Ballesteros-Tato A, Browning JL, Dunn R, Randall TD, Lund FE. Regulation of T(H)2 development by CXCR5+ dendritic cells and lymphotoxin-expressing B cells. Nat Immunol. 2012;13(7):681–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Lambrecht BN, Hammad H. The airway epithelium in asthma. Nat Med. 2012;18(5):684–92.

    Article  CAS  PubMed  Google Scholar 

  78. Nathan AT, Peterson EA, Chakir J, Wills-Karp M. Innate immune responses of airway epithelium to house dust mite are mediated through beta-glucan-dependent pathways. J Allergy Clin Immunol. 2009;123(3):612–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. de Boer JD, Roelofs JJ, de Vos AF, de Beer R, Schouten M, Hommes TJ, Hoogendijk AJ, de Boer OJ, Stroo I, van der Zee JS, van’t Veer C, et al. Lipopolysaccharide inhibits Th2 lung inflammation induced by house dust mite allergens in mice. Am J Respir Cell Mol Biol. 2012;48(3):382–9.

    Article  PubMed  CAS  Google Scholar 

  80. Chu DK, Llop-Guevara A, Walker TD, Flader K, Goncharova S, Boudreau JE, Moore CL, Seunghyun In T, Waserman S, Coyle AJ, Kolbeck R, et al. L-33, but not thymic stromal lymphopoietin or IL-25, is central to mite and peanut allergic sensitization. J Allergy Clin Immunol. 2013;131(1):187–200. e181–188.

    Article  CAS  PubMed  Google Scholar 

  81. Gregory LG, Jones CP, Walker SA, Sawant D, Gowers KH, Campbell GA, McKenzie AN, Lloyd CM. IL-25 drives remodelling in allergic airways disease induced by house dust mite. Thorax. 2013;68(1):82–90.

    Article  PubMed Central  PubMed  Google Scholar 

  82. Larson RP, Comeau MR, Ziegler SF. Cutting edge: allergen-specific CD4 T cells respond indirectly to thymic stromal lymphopoietin to promote allergic responses in the skin. J Immunol. 2013;190(9):4474–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Bell BD, Kitajima M, Larson RP, Stoklasek TA, Dang K, Sakamoto K, Wagner KU, Reizis B, Hennighausen L, Ziegler SF. The transcription factor stat5 is critical in dendritic cells for the development of Th2 but not Th1 responses. Nat Immunol. 2013;14(4):364–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Juncadella IJ, Kadl A, Sharma AK, Shim YM, Hochreiter-Hufford A, Borish L, Ravichandran KS. Apoptotic cell clearance by bronchial epithelial cells critically influences airway inflammation. Nature. 2013;493(7433):547–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Wills-Karp M, Rani R, Dienger K, Lewkowich I, Fox JG, Perkins C, Lewis L, Finkelman FD, Smith DE, Bryce PJ, Kurt-Jones EA, et al. Trefoil factor 2 rapidly induces interleukin 33 to promote type 2 immunity during allergic asthma and hookworm infection. J Exp Med. 2012;209(3):607–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Willart MA, Deswarte K, Pouliot P, Braun H, Beyaert R, Lambrecht BN, Hammad H. Interleukin-1alpha controls allergic sensitization to inhaled house dust mite via the epithelial release of GM-CSF and IL-33. J Exp Med. 2012;209(8):1505–17.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Martin RA, Ather JL, Lundblad LK, Suratt BT, Boyson JE, Budd RC, Alcorn JF, Flavell RA, Eisenbarth SC, Poynter ME. Interleukin-1 receptor and caspase-1 are required for the Th17 response in nitrogen dioxide-promoted allergic airway disease. Am J Respir Cell Mol Biol. 2013;48(5):655–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Kool M, Willart MA, van Nimwegen M, Bergen I, Pouliot P, Virchow JC, Rogers N, Osorio F, Reis ESC, Hammad H, Lambrecht BN. An unexpected role for uric acid as an inducer of T helper 2 cell immunity to inhaled antigens and inflammatory mediator of allergic asthma. Immunity. 2011;34(4):527–40.

    Article  CAS  PubMed  Google Scholar 

  89. Eisenbarth SC, Williams A, Colegio OR, Meng H, Strowig T, Rongvaux A, Henao-Mejia J, Thaiss CA, Joly S, Gonzalez DG, Xu L, et al. Nlrp10 is a nod-like receptor essential to initiate adaptive immunity by dendritic cells. Nature. 2012;484(7395):510–3.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Novak N, Valenta R, Bohle B, Laffer S, Haberstok J, Kraft S, Bieber T. FcepsilonRI engagement of langerhans cell-like dendritic cells and inflammatory dendritic epidermal cell-like dendritic cells induces chemotactic signals and different T-cell phenotypes in vitro. J Allergy Clin Immunol. 2004;113(5):949–57.

    Article  CAS  PubMed  Google Scholar 

  91. Demedts IK, Brusselle GG, Vermaelen KY, Pauwels RA. Identification and characterization of human pulmonary dendritic cells. Am J Respir Cell Mol Biol. 2005;32(3):177–84.

    Article  CAS  PubMed  Google Scholar 

  92. Holloway JA, Holgate ST, Semper AE. Expression of the high-affinity IgE receptor on peripheral blood dendritic cells: differential binding of IgE in atopic asthma. J Allergy Clin Immunol. 2001;107(6):1009–18.

    Article  CAS  PubMed  Google Scholar 

  93. Schroeder JT, Bieneman AP, Chichester KL, Hamilton RG, Xiao H, Saini SS, Liu MC. Decreases in human dendritic cell-dependent T(h)2-like responses after acute in vivo IgE neutralization. J Allergy Clin Immunol. 2010;125(4):896–901. e896.

    Article  CAS  PubMed  Google Scholar 

  94. Josefowicz SZ, Niec RE, Kim HY, Treuting P, Chinen T, Zheng Y, Umetsu DT, Rudensky AY. Extrathymically generated regulatory T cells control mucosal Th2 inflammation. Nature. 2012;482(7385):395–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Guilliams M, Crozat K, Henri S, Tamoutounour S, Grenot P, Devilard E, de Bovis B, Alexopoulou L, Dalod M, Malissen B. Skin-draining lymph nodes contain dermis-derived Cd103(-) dendritic cells that constitutively produce retinoic acid and induce foxp3(+) regulatory T cells. Blood. 2010;115(10):1958–68.

    Article  CAS  PubMed  Google Scholar 

  96. Pulendran B, Tang H, Manicassamy S. Programming dendritic cells to induce T(h)2 and tolerogenic responses. Nat Immunol. 2010;11(8):647–55.

    Article  CAS  PubMed  Google Scholar 

  97. de Heer HJ, Hammad H, Soullie T, Hijdra D, Vos N, Willart MA, Hoogsteden HC, Lambrecht BN. Essential role of lung plasmacytoid dendritic cells in preventing asthmatic reactions to harmless inhaled antigen. J Exp Med. 2004;200(1):89–98.

    Article  PubMed Central  PubMed  Google Scholar 

  98. Oriss TB, Ostroukhova M, Seguin-Devaux C, Dixon-McCarthy B, Stolz DB, Watkins SC, Pillemer B, Ray P, Ray A. Dynamics of dendritic cell phenotype and interactions with CD4+ T cells in airway inflammation and tolerance. J Immunol. 2005;174(2):854–63.

    Article  CAS  PubMed  Google Scholar 

  99. McGee HS, Stallworth AL, Agrawal T, Shao Z, Lorence L, Agrawal DK. Fms-like tyrosine kinase 3 ligand decreases T helper type 17 cells and suppressors of cytokine signaling proteins in the lung of house dust mite-sensitized and -challenged mice. Am J Respir Cell Mol Biol. 2010;43(5):520–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  100. McGee HS, Edwan JH, Agrawal DK. Flt3-l increases CD4+CD25+Foxp3+ICOS+ cells in the lungs of cockroach-sensitized and -challenged mice. Am J Respir Cell Mol Biol. 2010;42(3):331–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  101. Kool M, van Nimwegen M, Willart MA, Muskens F, Boon L, Smit JJ, Coyle A, Clausen BE, Hoogsteden HC, Lambrecht BN, Hammad H. An anti-inflammatory role for plasmacytoid dendritic cells in allergic airway inflammation. J Immunol. 2009;183(2):1074–82.

    Article  CAS  PubMed  Google Scholar 

  102. Swiecki M, Gilfillan S, Vermi W, Wang Y, Colonna M. Plasmacytoid dendritic cell ablation impacts early interferon responses and antiviral NK and CD8(+) T cell accrual. Immunity. 2010;33(6):955–66.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  103. Takagi H, Fukaya T, Eizumi K, Sato Y, Sato K, Shibazaki A, Otsuka H, Hijikata A, Watanabe T, Ohara O, Kaisho T, et al. Plasmacytoid dendritic cells are crucial for the initiation of inflammation and T cell immunity in vivo. Immunity. 2011;35(6):958–71.

    Article  CAS  PubMed  Google Scholar 

  104. Lombardi V, Speak AO, Kerzerho J, Szely N, Akbari O. CD8alpha(+)beta(-) and CD8alpha(+)beta(+) plasmacytoid dendritic cells induce Foxp3(+) regulatory T cells and prevent the induction of airway hyper-reactivity. Mucosal Immunol. 2012;5(4):432–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  105. Toussaint M, Fievez L, Drion PV, Cataldo D, Bureau F, Lekeux P, Desmet CJ. Myeloid hypoxia-inducible factor 1alpha prevents airway allergy in mice through macrophage-mediated immunoregulation. Mucosal Immunol. 2013;6(3):485–97.

    Article  CAS  PubMed  Google Scholar 

  106. Bedoret D, Wallemacq H, Marichal T, Desmet C, Quesada Calvo F, Henry E, Closset R, Dewals B, Thielen C, Gustin P, de Leval L, et al. Lung interstitial macrophages alter dendritic cell functions to prevent airway allergy in mice. J Clin Invest. 2009;119(12):3723–38.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  107. Lauzon-Joset JF, Marsolais D, Langlois A, Bissonnette EY. Dysregulation of alveolar macrophages unleashes dendritic cell-mediated mechanisms of allergic airway inflammation. Mucosal Immunol. 2014;7(1):155–64.

    Article  CAS  PubMed  Google Scholar 

  108. Holt PG, Oliver J, Bilyk N, McMenamin C, McMenamin PG, Kraal G, Thepen T. Downregulation of the antigen presenting cell function(s) of pulmonary dendritic cells in vivo by resident alveolar macrophages. J Exp Med. 1993;177:397–407.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bart N. Lambrecht M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lambrecht, B.N., van Helden, M., Hammad, H. (2016). Dendritic Cells and Type 2 Inflammation. In: Gause, W., Artis, D. (eds) The Th2 Type Immune Response in Health and Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2911-5_3

Download citation

Publish with us

Policies and ethics