Skip to main content

Modeling Hedgehog Signaling Through Flux-Saturated Mechanisms

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1322))

Abstract

Hedgehog (Hh) molecules act as morphogens directing cell fate during development by activating various target genes in a concentration dependent manner. Hitherto, modeling morphogen gradient formation in multicellular systems has employed linear diffusion, which is very far from physical reality and needs to be replaced by a deeper understanding of nonlinearities. We have developed a novel mathematical approach by applying flux-limited spreading (FLS) to Hh morphogenetic actions. In the new model, the characteristic velocity of propagation of each morphogen is a new key biological parameter. Unlike in linear diffusion models, FLS modeling predicts concentration fronts and correct patterns and cellular responses over time. In addition, FLS considers not only extracellular binding partners influence, but also channels or bridges of information transfer, such as specialized filopodia or cytonemes as a mechanism of Hh transport. We detect and measure morphogen particle velocity in cytonemes in the Drosophila wing imaginal disc. Indeed, this novel approach to morphogen gradient formation can contribute to future research in the field.

This is a preview of subscription content, log in via an institution.

Buying options

eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Ingham PW, Nakano Y, Seger C (2011) Mechanisms and functions of Hedgehog signalling across the metazoa. Nat Rev Genet 12:393–406

    Article  CAS  PubMed  Google Scholar 

  2. Turing AM (1952) The chemical basis of morphogenesis. Phil Trans Roy Soc Lond Ser B Biol Sci 237:37–72

    Article  Google Scholar 

  3. Crick F (1970) Diffusion in embryogenesis. Nature 40:561–563

    Article  Google Scholar 

  4. Meinhardt H (1978) Space–dependent cell determination under the control of a morphogen gradient. J Theor Biol 74:307–321

    Article  CAS  PubMed  Google Scholar 

  5. Lander AD, Nie Q, Wan FY-M (2002) Do morphogen gradients arise by diffusion? Dev Cell 2:785–796

    Article  CAS  PubMed  Google Scholar 

  6. Kondo S, Miura T (2010) Reaction-diffusion model as a framework for understanding biological pattern formation. Science 329:1616–1620

    Article  CAS  PubMed  Google Scholar 

  7. Dessaud E, Yang LL, Hill K, Cox B, Ulloa F, Ribeiro A et al (2007) Interpretation of the Sonic Hedgehog morphogen gradient by a temporal adaptation mechanism. Nature 450:717–720

    Article  CAS  PubMed  Google Scholar 

  8. Stecca B, Ruiz i Altaba A (2010) Context-dependent regulation of the GLI code in cancer by Hedgehog and non-Hedgehog signals. J Mol Cell Biol 2(2):84–95

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Jessell TM (2000) Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat Rev Genet 1:20–29

    Article  CAS  PubMed  Google Scholar 

  10. Guerrero I, Chiang C (2007) A conserved mechanism of Hedgehog gradient formation by lipid modifications. Trends Cell Biol 17:1–5

    Article  CAS  PubMed  Google Scholar 

  11. Vyas N, Goswami D, Manonmani A, Sharma P, Ranganath H, VijayRaghavan K, Shashidhara L et al (2008) Nanoscale organization of Hedgehog is essential for long-range signalling. Cell 133:1214–1227

    Article  CAS  PubMed  Google Scholar 

  12. Zeng X, Goetz JA, Suber LM, Scott WJ Jr, Schreiner CM, Robbins DJ (2011) A freely diffusible form of Sonic Hedgehog mediates long-range signalling. Nature 411:716–720

    Article  Google Scholar 

  13. Greco V, Hannus M, Eaton S (2001) Argosomes: a potential vehicle for the spread of morphogens through epithelia. Cell 106:633–645

    Article  CAS  PubMed  Google Scholar 

  14. Panákova D, Sprong H, Marois E, Thiele C, Eaton S (2005) Lipoprotein particles are required for Hedgehog and Wingless signalling. Nature 435:58–65

    Article  PubMed  Google Scholar 

  15. Callejo A, Culi J, Guerrero I (2008) Patched, the receptor of Hedgehog, is a lipoprotein receptor. Proc Natl Acad Sci U S A 105:912–917

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Gurdon JB, Mitchell A, Mahony D (1995) Direct and continuous assessment by cells of their position in a morphogen gradient. Nature 376:520–521

    Article  CAS  PubMed  Google Scholar 

  17. Saha K, Schaffer DV (2006) Signaling dynamics in Sonic hedgehog tissue patterning. Development 133:889–900

    Article  CAS  PubMed  Google Scholar 

  18. Kornberg TB (2012) The imperatives of context and contour for morphogen dispersion. Biophys J 103:2252–2256

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Ramirez-Weber FA, Kornberg TB (1999) Cytonemes: cellular processes that project to the principal signaling center in Drosophila imaginal discs. Cell 97:599–607

    Article  CAS  PubMed  Google Scholar 

  20. Bilioni A, Sánchez-Hernández D, Callejo A, Gradilla AC, Ibáñez C, Mollica E et al (2013) Balancing Hedgehog, a retention and release equilibrium given by Dally, Ihog, Boi and shifted/DmWif. Dev Biol 376:198–212

    Article  CAS  PubMed  Google Scholar 

  21. Callejo A, Bilioni A, Mollica E, Gorfinkiel N, Andrés G, Ibáñez C et al (2011) Dispatched mediates Hedgehog basolateral release to form the long-range morphogenetic gradient in the Drosophila wing disk epithelium. Proc Natl Acad Sci U S A 108:12591–12598

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Gradilla A-C, González E, Seijo I, Andrés G, González-Méndez L, Sánchez V et al (2014) Exosomes as Hedgehog carriers in cytoneme-mediated transport and secretion. Nat Commun 5:5649

    Article  CAS  PubMed  Google Scholar 

  23. Roy S, Hsiung F, Kornberg TB (2011) Specificity of Drosophila cytonemes for distinct signalling pathways. Science 15:354–358

    Article  Google Scholar 

  24. Sanders TA, Llagostera E, Barna M (2013) Specialized filopodia direct long-range transport of Shh during vertebrate tissue patterning. Nature 497:628–632

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Bischoff M, Gradilla AC, Seijo I, Andrés G, Rodríguez-Navas C, González-Méndez L, Guerrero I (2013) Cytonemes are required for the establishment of a normal Hedgehog morphogen gradient in Drosophila epithelia. Nat Cell Biol 15:1269–1283

    Article  CAS  PubMed  Google Scholar 

  26. Verbeni M, Sánchez O, Mollica E, Siegl-Cachedernier I, Carleton A, Guerrero I et al (2013) Morphogenetic action through flux-limited spreading. Phys Life Rev 10:457–475

    Article  CAS  PubMed  Google Scholar 

  27. Zheng X, Mann RK, Sever N, Beachy PA (2010) Genetic and biochemical definition of the Hedgehog receptor. Genes Dev 24:57–71

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Izzi L, Lévesque M, Morin S, Laniel D, Wilkes BC, Mille F et al (2011) Boc and Gas1 each form distinct Shh receptor complexes with Ptch1 and are required for Shh-mediated cell proliferation. Dev Cell 20:788–801

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Yan D, Wu Y, Yang Y, Belenkaya TY, Tang X, Lin X et al (2010) The cell-surface proteins Dally-like and Ihog differentially regulate Hedgehog signaling strength and range during development. Development 137:2033–2044

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Cardozo MJ, Sánchez-Arrones L, Sandonis A, Sánchez-Camacho C, Gestri G, Wilson SW, Guerrero IP (2014) Bovolenta, Cdon acts as a Hedgehog decoy receptor during proximal-distal patterning of the optic vesicle. Nat Commun 5:4272

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Brand AH, Perrimon N (1991) Generating lineage-specific markers to study Drosophila development. Dev Genet 12:238–252

    Article  PubMed  Google Scholar 

  32. Torroja C, Gornkiel N, Guerrero I (2004) Patched controls the Hedgehog gradient by endocytosis in a dynamic-dependent manner, but this internalization does not play a major role in signal transduction. Development 131:2395–2408

    Article  CAS  PubMed  Google Scholar 

  33. Tanimoto H, Itoh S, ten Dijke P, Tabata T (2000) Hedgehog creates a gradient of DPP activity in Drosophila wing imaginal discs. Mol Cell 5:59–71

    Article  CAS  PubMed  Google Scholar 

  34. Ashburner M, Roote J (2007) Maintenance of a Drosophila laboratory: general procedures. CSH Protoc 2007: pdb.ip35

    Google Scholar 

  35. Rojas-Rios P, Guerrero I, Gonzalez-Reyes A (2012) Cytoneme-mediated delivery of hedgehog regulates the expression of bone morphogenetic proteins to maintain germline stem cells in Drosophila. PLoS Biol 10:e1001298

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Bellomo N, Bellouquid A, Nieto J, Soler J (2010) Multiscale biological tissue models and flux-limited chemotaxis for multicellular growing systems. Math Models Methods Appl Sci 20:1179–1207

    Article  CAS  Google Scholar 

  37. Campos J, Guerrero P, Sánchez O, Soler J (2013) On the analysis of travelling waves to a nonlinear flux limited reaction-diffusion equation. Ann Inst H Poincaré Anal Non Linéaire 30:141–155

    Article  Google Scholar 

  38. Calvo J, Campos J, Caselles V, Sánchez O, Soler J. Pattern formation in a flux limited reaction-diffusion equation of porous media type. http://arxiv.org/abs/1309.6789

  39. Rosenau P (1992) Tempered diffusion: a transport process with propagating front and inertial delay. Phys Rev A 46:7371–7374

    Article  Google Scholar 

  40. Brenier Y (2003) Extended Monge-Kantorovich theory. In: Caffarelli LA, Salsa S (Eds) Optimal transportation and applications, Lectures given at the C.I.M.E. Summer School help in Martina Franca, Lecture Notes in Math. 1813, Springer-Verlag. pp 91–122

    Google Scholar 

  41. Calvo J, Mazón JM, Soler J, Verbeni M (2011) Qualitative properties of the solutions of a nonlinear flux–limited equation arising in the transport of morphogens. Math Models Methods Appl Sci 21:893–937

    Article  Google Scholar 

  42. Guerrero I, Kornberg TB (2014) Hedgehog and its circuitous journey from producing to target cells. Semin Cell Dev Biol 33C:52–62

    Article  Google Scholar 

  43. Bellomo N, Soler J (2012) On the mathematical theory of the dynamics of swarms viewed as a complex system. Math Models Methods Appl Sci 22, Paper No. 1140006

    Google Scholar 

  44. Ballerini M, Cabibbo N, Candelier R, Cavagna A, Cisbani E, Giardina I et al (2008) Interaction ruling animal collective behavior depends on topological rather than metric distance: evidence from a field study. Proc Natl Acad Sci U S A 105(4):1232–1237

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Couzin ID (2007) Collective minds. Nature 445:715

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The paper has been partially supported by Junta de Andalucía Project FQM 954. IG was supported by Fundamental Biology (BFU2011-25987) and Consolider (CDS 2007-00008) program grants from the Spanish Ministry of Economy and Commutativity (MINECO), by Marie Curie FP7- Integration Network (ITN 238186) grant and by an institutional grant to Centro de Biología Molecular “Severo Ochoa” from the Fundación Areces. J.C., O.S., and J.S. were supported in part by Spanish MINECO, project MTM2011-23384 and FEDER funds. JC is also partially supported by La Caixa “Collaborative Mathematical Research’’ programme and a Juan de la Cierva grant of the spanish MEC.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Isabel Guerrero or Juan Soler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Sánchez, Ó., Calvo, J., Ibáñez, C., Guerrero, I., Soler, J. (2015). Modeling Hedgehog Signaling Through Flux-Saturated Mechanisms. In: Riobo, N. (eds) Hedgehog Signaling Protocols. Methods in Molecular Biology, vol 1322. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2772-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2772-2_3

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2771-5

  • Online ISBN: 978-1-4939-2772-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics