Skip to main content
Book cover

CRISPR pp 349–362Cite as

Targeted Transcriptional Repression in Bacteria Using CRISPR Interference (CRISPRi)

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1311))

Abstract

Clustered regularly interspersed short palindromic repeats (CRISPR) interference (CRISPRi) is a powerful technology for sequence-specifically repressing gene expression in bacterial cells. CRISPRi requires only a single protein and a custom-designed guide RNA for specific gene targeting. In Escherichia coli, CRISPRi repression efficiency is high (~300-fold), and there are no observable off-target effects. The method can be scaled up as a general strategy for the repression of many genes simultaneously using multiple designed guide RNAs. Here we provide a protocol for efficient guide RNA design, cloning, and assay of the CRISPRi system in E. coli. In principle, this protocol can be used to construct CRISPRi systems for gene repression in other species of bacteria.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Wiedenheft B, Sternberg SH, Doudna JA (2012) RNA-guided genetic silencing systems in bacteria and archaea. Nature 482:331–338

    Article  CAS  PubMed  Google Scholar 

  2. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712

    Article  CAS  PubMed  Google Scholar 

  3. Wiedenheft B, Lander GC, Zhou K, Jore MM, Brouns SJ, van der Oost J, Doudna JA, Nogales E (2011) Structures of the RNA-guided surveillance complex from a bacterial immune system. Nature 477:486–489

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Brouns SJJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJH, Snijders APL, Dickman MJ, Makarova KS, Koonin EV, van der Oost J (2008) Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321:960–964

    Article  CAS  PubMed  Google Scholar 

  5. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  PubMed  Google Scholar 

  6. Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA (2013) RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31:233–239

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152:1173–1183

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Huang S-H (1994) Inverse polymerase chain reaction. Mol Biotechnol 2:15–22

    Article  CAS  PubMed  Google Scholar 

  11. Quan J, Tian J (2011) Circular polymerase extension cloning for high-throughput cloning of complex and combinatorial DNA libraries. Nat Protoc 6:242–251

    Article  CAS  PubMed  Google Scholar 

  12. Engler C, Gruetzner R, Kandzia R, Marillonnet S (2009) Golden Gate shuffling: a one-pot DNA Shuffling method based on type IIs restriction enzymes. PLoS One 4:e5553

    Article  PubMed Central  PubMed  Google Scholar 

  13. Campbell RE, Tour O, Palmer AE, Steinbach PA, Baird GS, Zacharias DA, Tsien RY (2002) A monomeric red fluorescent protein. Proc Natl Acad Sci U S A 99:7877–7882

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Deveau H, Barrangou R, Garneau JE, Labonté J, Fremaux C, Boyaval P, Romero DA, Horvath P, Moineau S (2008) Phage Response to CRISPR-Encoded Resistance in Streptococcus thermophilus. J Bacteriol 190:1390–1400

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Garneau JE, Dupuis MÈ, Villion M, Romero DA, Barrangou R, Boyaval P, Fremaux C, Horvath P, Magadán AH, Moineau S (2010) The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468:67–71

    Article  CAS  PubMed  Google Scholar 

  16. Mojica FJ, Díez-Villaseñor C, García-Martínez J, Almendros C (2009) Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155:733–740

    Article  CAS  PubMed  Google Scholar 

  17. Shah SA, Erdmann S, Mojica FJ, Garrett RA (2013) Protospacer recognition motifs: mixed identities and functional diversity. RNA Biol 10:891–899

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  19. BLAST: Basic Local Alignment Search Tool, http://blast.ncbi.nlm.nih.gov/Blast.cgi.

  20. Gruber AR, Lorenz R, Bernhart SH, Neuböck R, Hofacker IL (2008) The Vienna RNA websuite. Nucleic Acids Res 36:W70–W74

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Ochman H, Gerber AS, Hartl DL (1988) Genetic applications of an inverse polymerase chain reaction. Genetics 120:621–623

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386

    CAS  PubMed  Google Scholar 

  23. Clifford AA (1973) Multivariate error analysis: a handbook of error propagation and calculation in many-parameter systems. Wiley, New York. ISBN 0470160551

    Google Scholar 

Download references

Acknowledgements

We thank the Lei Qi lab, Carol Gross lab, and Wendell Lim lab for their support. J.S.H. acknowledges the support from Biophysics Graduate Program at UCSF. Spencer Wong acknowledges the support from Summer Research Training Program (SRTP) at UCSF. This work was supported by NIH P50 (grant GM081879, L.S.Q.), NIH Director’s Early Independence Award (grant OD017887, L.S.Q.), and a Ruth L. Kirschstein National Research Service Award (F32GM108222-01, J.M.P.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei S. Qi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hawkins, J.S., Wong, S., Peters, J.M., Almeida, R., Qi, L.S. (2015). Targeted Transcriptional Repression in Bacteria Using CRISPR Interference (CRISPRi). In: Lundgren, M., Charpentier, E., Fineran, P. (eds) CRISPR. Methods in Molecular Biology, vol 1311. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2687-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2687-9_23

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2686-2

  • Online ISBN: 978-1-4939-2687-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics