Skip to main content

Sensorially and Instrumentally Detected Antiplastizicing Effect of Water in Cornflakes

  • Chapter
Water Stress in Biological, Chemical, Pharmaceutical and Food Systems

Part of the book series: Food Engineering Series ((FSES))

  • 2218 Accesses

Abstract

Textural properties are key drivers for food acceptability (Chauvin et al. 2008). In low-moisture cereal foods, quality depends mainly on textural attributes like crispness (Fontanet et al. 1997). Water is one of the most important factors affecting texture of low-moisture foods, and its effect has been extensively studied (Labuza et al. 1970; Roos et al. 1996; Peleg 1998; Jacoby and King 2001; Lewicki 2004; Castro-Prada et al. 2009). It is also known that water affects glass transition temperature (Chen et al. 1997), which is widely used in assessing stability (Roos 2010). In order to measure water mobility in complex and heterogeneous systems, nuclear magnetic resonance spectroscopy has been widely used (Chinachoti et al. 2006). On the other hand, in low-moisture starchy food, other processes that take place at glassy state, such as physical aging and toughening, could affect textural properties (Suwonsichon and Peleg 1998; Chang et al. 2000; Chung and Lim 2004).

S. Guerrero is member of Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A 0 :

Area under compression curve

CPMG:

Carr-Purcell-Meiboom-Gill sequence

DSC:

Differential scanning calorimetry

F (t) :

Force as function of time

H (t) :

Sample height as a function of time

H 0 :

Sample initial height

H-TR-NMR:

Time-resolved proton nuclear magnetic resonance

RVP:

Relative vapor pressures

T 2 :

Spin-spin transverse relaxation times

T 2LHahn :

Spin-spin transverse relaxation times for second proton population

T 2SHahn :

Spin-spin transverse relaxation times for one proton population

T g :

Glass transition temperature

Wc:

Water content

ε E :

Engineering strain

σ E :

Engineering stress

Τ :

Interpulse time value

References

  • AACC (1995) Approved methods of the American Association of Cereal Chemists. 44-16. The Association, St. Paul, MN

    Google Scholar 

  • Castro-Prada EM, Primo-Martín C, Meinders MBJ, Hamer RJ, Van Vliet T (2009) Relationship between water activity, deformation speed, and crispness characterization. J Texture Stud 40(2):127–156

    Article  Google Scholar 

  • Chang YP, Cheah PB, Ceow CC (2000) Plasticizing-antiplasticizing effects of water on physical properties of tapioca starch films in the glassy state. J Food Sci 65(3):445–451

    Article  CAS  Google Scholar 

  • Chauvin MA, Younce F, Ross C, Swanson B (2008) Standard scales for crispness, crackliness and crunchiness in dry and wet foods: relationship with acoustical determinations. J Texture Stud 39:345–368

    Article  Google Scholar 

  • Chen PL, Long Z, Ruan RR, Labuza TP (1997) Nuclear magnetic resonance studies of water mobility in bread during storage. Lebensm-Wiss Technol 30(2):178–183

    Article  CAS  Google Scholar 

  • Chinachoti P, Vittadini E, Chatakanonda P, Vodovotz Y (2006) Characterization of molecular mobility in carbohydrate food systems by NMR. In: Webb Graham A (ed) Modern magnetic resonance. Springer, Dordrecht, Netherlands, pp 1703–1712

    Chapter  Google Scholar 

  • Choi SG, Kerr WL (2003) 1H-NMR studies of molecular mobility in wheat starch. Food Res Int 36:341–348

    Article  CAS  Google Scholar 

  • Chung HJ, Lim ST (2004) Physical aging of glassy normal and waxy rice starches: thermal and mechanical characterization. Carbohydrate Polym 57(1):15–21

    Article  CAS  Google Scholar 

  • Civille GV, Szczesniak AS (1973) Guidelines to training a texture profile panel. J Texture Stud 4:204–223

    Article  Google Scholar 

  • Farroni AE, Matiacevich SB, Guerrero S, Alzamora S, Buera MP (2008) Multi-level approach for the analysis of water effects in corn flakes. J Agric Food Chem 56(15):6447–6453

    Article  CAS  Google Scholar 

  • Farroni AE, Matiacevich SB, Buera MP (2010) Thermal transitions and molecular mobility in corn flakes as affected by water content. In: Reid DS, Sajjaanantakul T, Lillford PJ, Charoenrein S (eds) Water properties in food, health, pharmaceutical and biological systems: ISOPOW 10. Wiley-Blackwell, Ames, IA, pp 583–590

    Chapter  Google Scholar 

  • Fiszman S, Durán L (1997) Reología de Sólidos y Textura. In: Aguilera JM (ed) Temas en Tecnología de Alimentos. Instituto Politécnico Nacional, Dirección de Publicaciones y Material Educativo, México DF, p 229

    Google Scholar 

  • Fontanet I, Davidou S, Dacremont C, Le Meste M (1997) Effect of water on the mechanical behaviour of extruded flat bread. J Cereal Sci 25:303–311

    Article  Google Scholar 

  • Greenspan L (1977) Humidity fixed points of binary saturated aqueous solutions. J Res Natl Bur Stand 81:89–96

    Article  Google Scholar 

  • Harris M, Peleg M (1996) Patterns of textural changes in brittle cellular cereal foods caused by moisture sorption. Cereal Chem 73:225–231

    CAS  Google Scholar 

  • Hicsasmaz Z, Rizvi SSH (2005) Effect of size and shape on modulus of deformability. LWT Food Sci Technol 38(4):431–435

    Article  CAS  Google Scholar 

  • Hough G, Contarini A, Muñoz A (1994) Training a texture profile panel and constructing standard rating scales in Argentina. J Texture Stud 25:45–57

    Article  Google Scholar 

  • Jacoby D, King C (2001) Sensory evaluation in snack foods development and production. In: Lucas EW, Rooney LW (eds) Snack foods processing. CRC Press, London

    Google Scholar 

  • Labuza T, Tannenbaum S, Karel M (1970) Water content and stability of low-moisture and intermediate moisture foods. Food Technol 24:543–550

    Google Scholar 

  • Lewicki PP (2004) Water as the determinant of food engineering properties. A review. J Food Eng 61(4):483–495

    Article  Google Scholar 

  • Meilgaard MC, Strauss S, Carr BT, Civille GV (1999) Sensory evaluation techniques. CRC Press LLC., Boca Raton, FL

    Book  Google Scholar 

  • Mohsenin NN, Mittal JP (1977) Use of rheological terms and correlation of compatible measurements in food texture research. J Texture Stud 8(4):395–408

    Article  Google Scholar 

  • Peleg M (1998) Mechanical properties of dry brittle cereal products. In: Reid E (ed) The properties of water in foods. CRC Press, London, pp 233–253

    Chapter  Google Scholar 

  • Peng Y, Lu R (2005) Modeling multispectral scattering profiles for prediction of apple fruit firmness. Trans ASAE 48:235–242

    Article  Google Scholar 

  • Reid DS, Fennema OR (2008) Water and ice. In: Damodaran S, Parkin KL, Fennema OR (eds) Food chemistry. CRC Press, Boca Ratón, FL, pp 18–77

    Google Scholar 

  • Roos YH (2010) Glass transition temperature and its relevance in food processing. Annu Rev Food Sci Technol 1(1):469–496

    Article  CAS  Google Scholar 

  • Roos YH, Karel M, Kokini JL (1996) Glass transitions in low moisture and frozen foods: effects on shelf life and quality. Food Technol 50(11):95–108

    Google Scholar 

  • Ruan RR, Chen PL (1998) Nuclear magnetic resonance techniques. In: Ruan RR, Chen PL (eds) Water in foods and biological materials: a nuclear magnetic resonance approach. Technomic, Lancaster, pp 17–24

    Google Scholar 

  • Suwonsichon T, Peleg M (1998) Instrumental and sensory detection of simultaneous brittleness loss and moisture toughening in three puffed cereals. J Texture Stud 29:255–274

    Article  Google Scholar 

  • Yang J, Huang M, Peng J, Shi J (2010) Rapid determination of the moisture content of milk powder by microwave sensor. Measurement. doi:10.1016/j.measurement.2010.08.007

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Farroni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Farroni, A.E., Guerrero, S., Buera, M.P. (2015). Sensorially and Instrumentally Detected Antiplastizicing Effect of Water in Cornflakes. In: Gutiérrez-López, G., Alamilla-Beltrán, L., del Pilar Buera, M., Welti-Chanes, J., Parada-Arias, E., Barbosa-Cánovas, G. (eds) Water Stress in Biological, Chemical, Pharmaceutical and Food Systems. Food Engineering Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2578-0_10

Download citation

Publish with us

Policies and ethics