Skip to main content

Irrigation Management for Efficient Crop Production

  • Living reference work entry
  • First Online:
Encyclopedia of Sustainability Science and Technology

Glossary

Application efficiency:

Relationship between the target irrigation depth (depth of water stored in the root zone to be used by the crop) and the depth of water applied to meet this target during a single irrigation event.

Conservation agriculture (CA):

An agricultural production system aimed at achieving a sustainable and profitable agriculture through the application of three principles: minimal soil disturbance, permanent organic soil cover, and diversification of crop species in rotations or associations.

Decision support systems (DSS):

Interactive information systems (not limited to computerized systems) that aid decision makers to identify and solve problems, and make decisions, which may be rapidly changing and are not easily specified in advance.

Deficit irrigation (DI):

An irrigation strategy based on applying irrigation depths that are less than the full crop water requirements (ET), either throughout the crop life cycle (continuous or sustained deficit irrigation) or...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

Primary Literature

  1. Fahlbusch H, Schultz B, Thatte CD (2004) The Indus basin: history of irrigation, drainage and flood management. ICID, New Delhi

    Google Scholar 

  2. Molden D (2007) Water for food, water for life: a comprehensive assessment of water management in agriculture. Earthscan/IWMI, London

    Google Scholar 

  3. FAO Aquastat (2012) http://www.fao.org/nr/water/aquastat/infographics/Irrigation_eng.pdf. Downloaded 19 Dec 2017

  4. Hsiao TC, Acevedo E, Fereres E, Henderson DW (1976) Water stress, growth, and osmotic adjustment. Philos Trans R Soc Lond B 273:479–500

    Article  Google Scholar 

  5. Fischer RA, Byerlee D, Edmeades G (2014) Crop yields and global food security. ACIAR/Fischer, Canberra

    Google Scholar 

  6. Tanji KK (1990) Nature and extent of agricultural salinity. In: Tanji KK (ed) Agricultural salinity assessment and management. ASCE, New York, pp 1–17

    Google Scholar 

  7. Clemmens AJ (2006) Improving irrigation water performance through an understanding of the water delivery process. Irrig Drain 55:223–234

    Article  Google Scholar 

  8. Bos MG, Nugteren J (1990) On irrigation efficiencies, Publication, vol 19, 4th edn. International Institute for Land Reclamation and Improvement (ILRI), Wageningen

    Google Scholar 

  9. Hsiao TC, Steduto P, Fereres E (2007) A systematic and quantitative approach to improve water use efficiency in agriculture. Irrig Sci 25:209–231

    Article  Google Scholar 

  10. Jensen ME (2007) Beyond irrigation efficiency. Irrig Sci 25:233–245

    Article  Google Scholar 

  11. de Wit CT (1992) Resource use efficiency in agriculture. Agric Syst 40:125–151

    Article  Google Scholar 

  12. Van Schilfgaarde J (1984) Drainage design for salinity control. In: Shainberg I, Shalhevet J (eds) Soil salinity under irrigation. Springer, New York, pp 190–197

    Google Scholar 

  13. Steduto P, Hsiao TC, Fereres E (2007) On the conservative behavior of biomass water productivity. Irrig Sci 25:189–207

    Article  Google Scholar 

  14. Richards RA (2006) Physiological traits used in the breeding of new cultivars for water-scarce environments. Agric Water Manag 80:197–211

    Article  Google Scholar 

  15. Salekdeh GH, Reynolds M, Bennett J, Boyer J (2009) Conceptual framework for drought phenotyping during molecular breeding. Trends Plant Sci 14:488–496

    Article  CAS  Google Scholar 

  16. Shainberg I, Levy GJ (1996) Infiltration and seal formation processes. In: Agassi M (ed) Soil erosion, conservation, and rehabilitation. Marcel Dekker, New York, pp 1–22

    Google Scholar 

  17. Fereres E et al (2014) Balancing crop yield and water productivity tradeoffs in herbaceous and woody crops. Funct Plant Biol 41:1009–1018

    Article  Google Scholar 

  18. FAO (2010) http://www.fao.org/ag/ca/. Verified on 26 May 2010

  19. Thompson RB, Gallardo M, Agüera T, Valdez LC, Fernandez MD (2006) Evaluation of the watermark sensor for use with drip irrigated vegetable crops. Irrig Sci 24:185–202

    Article  Google Scholar 

  20. Goldhamer DA, Fereres E (2001) Irrigation scheduling protocols using continuously recorded trunk diameter measurements. Irrig Sci 20:115–125

    Article  Google Scholar 

  21. Jackson RD (1982) Canopy temperature and crop water stress. Adv Irrig 1:43–85

    Article  Google Scholar 

  22. Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration: guidelines for computing crop water requirements, FAO irrigation and drainage paper, vol 56. FAO (Food and Agriculture Organization), Rome

    Google Scholar 

  23. Mantovani EC, Orgaz F, Villalobos FJ, Fereres E (1995) Modelling the effects of sprinkler irrigation uniformity on crop yield. Agric Water Manag 27:243–257

    Article  Google Scholar 

  24. Benson SM, White AF, Halfman S, Flexser S, Alavi M (1991) Groundwater contamination at the Kesterson reservoir, California 1. Hydrogeologic setting and conservative solute transport. Water Resour Res 27:1071–1084

    Article  CAS  Google Scholar 

  25. Hoffman GJ, Dirksen C, Ingvalson RD, Maas EV, Oster JD, Rawlins SL, Rhoades JD, Van Schilfgaarde J (1977) Minimizing salt in drain water by irrigation management: design and initial results of Arizona field studies. Agric Water Manag 1:233–252

    Article  Google Scholar 

  26. Sadler EJ, Evans RG, Stone KC, Camp CR (2005) Opportunities for conservation with precision irrigation. J Soil Water Conserv 60:371–379

    Google Scholar 

  27. Evans RG, Sadler EJ (2007) New technologies to improve crop water use efficiencies [CD-ROM]. S164. Lawrence Media

    Google Scholar 

  28. Santos C, Lorite IJ, Tasumi M, Allen RG, Fereres E (2010) Performance assessment of an irrigation scheme using indicators determined with remote sensing techniques. Irrig Sci 28:461. https://doi.org/10.1007/s00271-010-0207-7

    Article  Google Scholar 

  29. Zarco-Tejada PJ, Berni JAJ, Suárez L, Sepulcre-Cantó G, Morales F, Miller JR (2009) Imaging chlorophyll fluorescence from an airborne narrow-band multispectral camera for vegetation stress detection. Rem Sens Environ 113:1262–1275

    Article  Google Scholar 

  30. Berni JAJ, Zarco-Tejada PJ, Sepulcre-Cantó G, Fereres E, Villalobos F (2009) Mapping canopy conductance and CWSI in olive orchards using high resolution thermal remote sensing imagery. Rem Sens Environ 113:2380–2388

    Article  Google Scholar 

  31. Bellvert J et al (2015) Vineyard irrigation scheduling based on airborne thermal imagery and water potential thresholds. Aust J Grape Wine Res 22:1–9

    Google Scholar 

  32. Fountas S, Wulfsohn D, Blackmore BS, Jacobsen HL, Pedersen SM (2006) A model of decision-making and information flows for information-intensive agriculture. Agric Syst 87:192–210

    Article  Google Scholar 

  33. Maton L, Leenhardt D, Goulard M, Bergez JE (2005) Assessing the irrigation strategies over a wide geographical area from structural data about farming systems. Agric Syst 86:293–311

    Article  Google Scholar 

  34. Arnott D (2006) Cognitive biases and decision support systems development: a design science approach. Inf Syst J 16:55–78

    Article  Google Scholar 

  35. Mohan S, Arumugam N (1997) Expert system applications in irrigation management: an overview. Comput Electron Agric 17:263–280

    Article  Google Scholar 

  36. Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley, Madison

    Google Scholar 

  37. Md Azamathulla H, Wu FC, Ab Ghani A, Narulkar SM, Zakaria NA, Chang CK (2008) Comparison between genetic algorithm and linear programming approach for real time operation. J Hydro Environ Res 2:172–181

    Article  Google Scholar 

  38. Kipkorir EC, Raes D, Labadie J (2001) Optimal allocation of short-term irrigation supply. Irrig Drain Syst 15:247–267

    Article  Google Scholar 

  39. Bergez JE, Garcia F, Lapasse L (2004) A hierarchical partitioning method for optimizing irrigation strategies. Agric Syst 80:235–253

    Article  Google Scholar 

  40. Bazzani GM (2005) An integrated decision support system for irrigation and water policy design: DSIRR. Environ Model Softw 20:153–163

    Article  Google Scholar 

  41. Stoorvogel JJ, Antle JM, Crissman CC, Bowen W (2004) The tradeoff analysis model: integrated bio-physical and economic modeling of agricultural production systems. Agric Syst 80:43–66

    Article  Google Scholar 

  42. Stewart JI, Hagan RM (1973) Functions to predict effects of crop water deficits. J Irrig Drain Div 99:421–439

    Google Scholar 

  43. Doorenbos J, Kassam AH (1979) Yield response to water, FAO irrigation and drainage paper, vol 33. FAO (Food and Agriculture Organization), Rome

    Google Scholar 

  44. Vaux HJ, Pruitt WO (1983) Crop-water production functions. In: Hillel DI (ed) Advances in irrigation, vol II. Academic, New York, pp 61–97

    Google Scholar 

  45. Goldhamer DA, Fereres E (2017) Establishing an almond water production function for California using long-term yield response to variable irrigation. Irrig Sci 35:169. https://doi.org/10.1007/s00271-016-0528-2

    Article  Google Scholar 

  46. Loomis RS, Rabbinge R, Ng E (1979) Explanatory models in crop physiology. Annu Rev Plant Physiol 30:339–367

    Article  Google Scholar 

  47. Stöckle CO, Donatelli M, Nelson R (2003) CropSyst, a cropping systems simulation model. Eur J Agron 18:289–307

    Article  Google Scholar 

  48. Jones CA, Dyke PT, Williams JR, Kiniry JR, Benson CA, Griggs RH (1991) EPIC: an operational model for evaluation of agricultural sustainability. Agric Syst 37:341–350

    Article  Google Scholar 

  49. Steduto P, Hsiao TC, Raes D, Fereres E (2009) AquaCrop – the FAO crop model to simulate yield response to water: I. Concepts and underlying principles. Agron J 101:426–437

    Article  Google Scholar 

  50. McCown RL, Hammer GL, Hargreaves JNG, Holzworth DP, Freebairn DM (1996) APSIM: a novel software system for model development, model testing and simulation in agricultural systems research. Agric Syst 50:255–271

    Article  Google Scholar 

  51. Ritchie JT, Godwin DC, Otter-Nacke S (1985) CERES – wheat: a simulation model of wheat growth and development. Texas A&M University Press, College Station

    Google Scholar 

  52. Sinclair TR, Seligman NG (1996) Crop modeling: from infancy to maturity. Agron J 88:698–704

    Article  Google Scholar 

  53. García-Vila M, Fereres E, Mateos L, Orgaz F, Steduto P (2009) Deficit irrigation optimization of cotton with AquaCrop. Agron J 101:477–487

    Article  Google Scholar 

  54. Sophocleous M (2005) Groundwater recharge and sustainability in the high plains aquifer in Kansas, USA. Hydrogeol J 13:351–365

    Article  CAS  Google Scholar 

  55. English MJ (1990) Deficit irrigation. I: analytical framework. J Irrig Drain Eng 116:399–412

    Article  Google Scholar 

  56. Debaeke P, Aboudrare A (2004) Adaptation of crop management to water-limited environments. Eur J Agron 21:433–446

    Article  Google Scholar 

  57. Fereres E, Goldhamer DA, Parsons LR (2003) Irrigation water management of horticultural crops. Historical review compiled for the American Society of Horticultural Science’s 100th anniversary. Hortscience 38:1036–1042

    Google Scholar 

Books and Reviews

  • Burt CM, Clemmens AJ, Strelkoff TS, Solomon KH, Bliesner RD, Howell TA, Eisenhauer DE (1997) Irrigation performance measures: efficiency and uniformity. J Irrig Drain Eng 123(6):423–442. ASCE (American Society of Civil Engineers), New York

    Article  Google Scholar 

  • Evans RG, Sadler EJ (2008) Methods and technologies to improve efficiency of water use: W00E04. Water Resour Res 44(7):W00E04. American Geophysical Union, Washington

    Article  Google Scholar 

  • Fereres E, González-Dugo V (2009) Improving productivity to face water scarcity in irrigated agriculture. In: Sadras VO, Calderini DF (eds) Crop physiology: applications for genetic improvement and agronomy. Academic, New York, pp 123–143

    Google Scholar 

  • Lamm FR, Ayars JE, Nakayama FS (2007) Microirrigation for crop production, Developments in agricultural engineering, vol 13. Elsevier, Amsterdam

    Google Scholar 

  • Malano H, Burton M (2001) Guidelines for benchmarking performance in the irrigation and drainage sector. IPTRID/FAO, Rome

    Google Scholar 

  • Molden D (2007) Water for food, water for life, a comprehensive assessment of water management in agriculture. Earthscan/IWMI, London

    Google Scholar 

  • National Research Council (1996) A new era for irrigation. National Academy, Washington, DC

    Google Scholar 

  • Passioura JB, Angus JF (2010) Chapter 2 – improving productivity of crops in water-limited environments, Advances in agronomy, vol 106. Academic, San Diego, pp 37–75

    Google Scholar 

  • Steduto P, Hsiao TC, Fereres E, Raes D (2012) Crop yield response to water, Irrigation & Drainage paper, vol 66. FAO, Rome

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elías Fereres .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Fereres, E., García-Vila, M. (2018). Irrigation Management for Efficient Crop Production. In: Meyers, R. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2493-6_162-3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2493-6_162-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2493-6

  • Online ISBN: 978-1-4939-2493-6

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics