Skip to main content

Porous Materials for Solar Energy Harvesting, Transformation, and Storage

  • Living reference work entry
  • First Online:
Encyclopedia of Sustainability Science and Technology

Glossary

Concentrated solar power systems::

special mirror assemblies (parabolic troughs, heliostats, or parabolic dishes) that track the sun and concentrate its radiation, converting solar energy to medium- to high-temperature heat and through that to electricity.

Porous materials:

materials containing voids (pores), usually comprised of a solid skeletal portion and of a void structure accessible to flow of a fluid (liquid or gas) through it.

Solar chemistry:

implementation of chemical reactions by harnessing solar energy via absorbing sunlight.

Structured solar reactors:

chemical reactors that utilize solar energy for the implementation of chemical reactions and where the solid catalytic or reactant particles are “arranged” free of randomness in space at the reactor level, in contrast to reactors wherein such particles are distributed randomly; examples of the first category include honeycomb, foam and membrane reactors, and of the second packed and fluidized beds.

Tailored porous...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Fricker H (1985) Study on the possibilities for a solar thermal power plant in the Val Maroz. Bull SEV/VSE 76:10–16

    Google Scholar 

  2. Winter CJ, Sizmann RL, Vant-Hull LL (eds) (1991) Solar power plants. Springer, Berlin

    Google Scholar 

  3. Meinecke W, Bohn M, Becker M, Gupta B (eds) (1994) Solar energy concentrating systems. C.F. Miller Verlag, Heidelberg

    Google Scholar 

  4. Chavez JM, Kolb GJ, Meinecke W (1993) In: Becker M, Klimas PC (eds) Second generation central receiver technologies – a status report. Verlag C.F. Müller, Karlsruhe

    Google Scholar 

  5. Hoffschmidt B, Dibowski G, Beuter M, Fernandez V, Téllez F, Stobbe P (2003) Test results of a 3 MW solar open volumetric receiver. ISES Solar World Congress, Göteborg

    Google Scholar 

  6. Koll G, Schwarzbözl P, Hennecke K, Hartz T, Schmitz M, Hoffschmidt B (2009) The solar tower Jülich – a research and demonstration plant for central receiver systems. In: The 15th Solar PACES conference, Berlin

    Google Scholar 

  7. Avila Marin AL (2011) Volumetric receivers in Solar Thermal Power Plants with Central Receiver System technology: a review. Sol Energy 85:891–910

    Article  Google Scholar 

  8. Capuano R, Fend T, Schwarzbözl P, Smirnova O, Stadler H, Hoffschmidt B, Pitz-Paal R (2016) Numerical models of advanced ceramic absorbers for volumetric receivers. Renew Sustain Energy Rev 58:656–665

    Article  Google Scholar 

  9. Buck R, Bräuning T, Denk T, Pfänder M, Schwarzbözl P, Tellez F (2002) Solar-hybrid gas turbine-based Power Tower Systems (REFOS). J Sol Energy Eng 124:2–9

    Article  Google Scholar 

  10. Romero M, Buck R, Pacheco JE (2002) An update on solar central receiver systems, projects and technologies. J Sol Energy Eng 124:98–108

    Article  Google Scholar 

  11. Kribus A, Zaibel R, Carrey D, Segal A, Karni J (1997) A solar-driven combined cycle power plant. Sol Energy 62:121–129

    Article  Google Scholar 

  12. Hinkley J, Hayward J, McNaughton R, Edwards J, Lovegrove K (2016) Concentrating solar fuels roadmap: final report, CSIRO

    Google Scholar 

  13. Ortona A, Fend T, Yu HW, Raju K, Fitriani P, Yoon DH (2015) Tubular Si-infiltrated SiCf/SiC composites for solar receiver application – Part 1: fabrication by replica and electrophoretic deposition. Sol Energy Mater Sol Cells 132:123–130

    Article  CAS  Google Scholar 

  14. Ortona A, Yoon DH, Fend T, Feckler G, Smirnova O (2015) Tubular Si-infiltrated SiCf/SiC composites for solar receiver application – Part 2: thermal performance analysis and prediction. Sol Energy Mater Sol Cells 140:382–387

    Article  CAS  Google Scholar 

  15. Ortona A, Fend T, Yu HW, Raju K, Yoon DH (2014) Fabrication of cylindrical SiCf/Si/SiC-based composite by electrophoretic deposition and liquid silicon infiltration. J Eur Ceram Soc 34:1131–1138

    Article  CAS  Google Scholar 

  16. Kribus A, Zaibel R, Carrey D, Segal A, Karni J (1998) A solar driven combined cycle power plant. Sol Energy 62:191–198

    Article  Google Scholar 

  17. Heck RM, Farrauto RJ (1995) Catalytic air pollution control: commercial technology. Van Nostrand Reinhold, New York

    Google Scholar 

  18. Cybulski A, Moulijn JA (2005) Structured catalysts and reactors. CRC Press, Boca Raton

    Book  Google Scholar 

  19. Agrafiotis CC, Pagkoura C, Lorentzou S, Kostoglou M, Konstandopoulos AG (2007) Hydrogen production in solar reactors. Catal Today 127:265–277

    Article  CAS  Google Scholar 

  20. Agrafiotis C, von Storch H, Roeb M, Sattler C (2014) Solar thermal reforming of methane feedstocks for hydrogen and syngas production – a review. Renew Sustain Energy Rev 29:656–682

    Article  CAS  Google Scholar 

  21. Agrafiotis C, Roeb M, Sattler C (2015) A review on solar thermal syngas production via redox pair-based water/carbon dioxide splitting thermochemical cycles. Renew Sust Energ Rev 42:254–285

    Article  CAS  Google Scholar 

  22. Agrafiotis C, Roeb M, Konstandopoulos AG, Nalbandian L, Zaspalis VT et al (2005) Solar water splitting for hydrogen production with monolithic reactors. Sol Energy 79:409–421

    Article  CAS  Google Scholar 

  23. Furler P, Scheffe J, Gorbar M, Moes L, Vogt U et al (2012) Solar thermochemical CO2 splitting utilizing a reticulated porous ceria redox system. Energy Fuel 26:7051–7059

    Article  CAS  Google Scholar 

  24. Furler P, Scheffe JR, Steinfeld A (2012) Syngas production by simultaneous splitting of H2O and CO2 via ceria redox reactions in a high-temperature solar reactor. Energy Environ Sci 5:6098–6103

    Article  CAS  Google Scholar 

  25. Chueh WC, Falter C, Abbott M, Scipio D, Furler P et al (2010) High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria. Science 330:1797–1801

    Article  CAS  Google Scholar 

  26. Schwarzboezl P, Pomp S, Koll G, Hennecke K, Hartz T, et al (2010) The solar tower in Jülich – first operational experiences and test results; 2010 21–24 Sep. Perpignan, France

    Google Scholar 

  27. Tamme R, Taut U, Streuber C, Kalfa H (1991) Energy storage development for solar thermal processes. Sol Energy Mater 24:386–396

    Article  CAS  Google Scholar 

  28. Zunft S, Hänel M, Krüger M, Dreißigacker V, Göhring F et al (2011) Jülich Solar Power Tower – experimental evaluation of the storage subsystem and performance calculation. J Sol Energy Eng 133:031019

    Article  Google Scholar 

  29. Agrafiotis C, Roeb M, Sattler C (2014) Cobalt oxide-based structured thermochemical reactors/heat exchangers for solar thermal energy storage in Concentrated Solar Power plants. Am Soc Mech Eng. pp V001T002A005

    Google Scholar 

  30. Agrafiotis C, Roeb M, Schmücker M, Sattler C (2014) Exploitation of thermochemical cycles based on solid oxide redox systems for thermochemical storage of solar heat. Part 1: testing of cobalt oxide-based powders. Sol Energy 102:189–211

    Article  CAS  Google Scholar 

  31. Karagiannakis G, Pagkoura C, Zygogianni A, Lorentzou S, Konstandopoulos A (2014) Monolithic ceramic redox materials for thermochemical heat storage applications in CSP plants. Energy Procedia 49:820–829

    Article  CAS  Google Scholar 

  32. Tescari S, Agrafiotis C, Breuer S, de Oliveira L, Neises-von Puttkamer M et al (2014) Thermochemical solar energy storage via redox oxides: materials and reactor/heat exchanger concepts. Energy Procedia 49:1034–1043

    Article  CAS  Google Scholar 

  33. Cordes S, Fiebig M, Pitz-Paal R (1992) First experimental results from the test of a selective volumetric air receiver. In: 6th international symposium on solar thermal concentrating technologies, Mojacar, Spain

    Google Scholar 

  34. ASTM (1993) Standard test method for solar absorptance, reflectance, and transmittance of materials using integrating spheres. Annual book of ASTM Standards 1993. ASTM, Philadelphia, pp 512–520

    Google Scholar 

  35. ASTM (1992) Standard tables for terrestrial direct normal solar spectral irradiance for air mass 1.5. Annual book of ASTM standards 1993, vol. 1202, Philadelphia, pp 481–486

    Google Scholar 

  36. Heck RM, Gulati S, Farrauto RJ (2001) The application of monoliths for gas phase catalytic reactions. Chem Eng J 82:149–156

    Article  CAS  Google Scholar 

  37. Buck R (2000) Massenstrom-Instabilitäten bei volumetrischen Receiver-Reaktoren. VDI-Verlag, Düsseldorf

    Google Scholar 

  38. Pitz-Paal R, Hoffschmidt B, Böhmer M, Becker M (1997) Experimental and numerical evaluation of performance and flow stability of different types of open volumetric absorbers under non-homogeneous irradiation. Sol Energy 60:135–150

    Article  Google Scholar 

  39. Hoffschmidt B (1997) Vergleichende Bewertung verschiedener Konzepte volumetrischer Strahlungsempfänger. DLR Forschungsbericht, Köln

    Google Scholar 

  40. Scheffler M, Colombo P (2005) Cellular ceramics: structure, manufacturing, properties and applications. Wiley-VCH Verlag GmbH & Co. KgaA, Weinheim

    Book  Google Scholar 

  41. Téllez F, Romero M, Heller P, Valverde A, Reche JF, Ulmer S, Dibowski G (2004) Thermal performance of SolAir 3000 kWth ceramic volumetric solar receiver, Oaxaca, Mexico

    Google Scholar 

  42. Agrafiotis CC, Mavroidis I, Konstandopoulos AG, Hoffschmidt B, Stobbe P et al (2007) Evaluation of porous silicon carbide monolithic honeycombs as volumetric receivers/collectors of concentrated solar radiation. Sol Energy Mater Sol Cells 91:474–488

    Article  CAS  Google Scholar 

  43. Capuano R, Fend T, Stadler H, Hoffschmidt B, Pitz-Paal R (2017) Optimized volumetric solar receiver: thermal performance prediction and experimental validation. Renew Energy 114:556–566

    Article  CAS  Google Scholar 

  44. Klöden B (2012) Principle workflow of EBM-process. Laser Technik J 2:33–38

    Google Scholar 

  45. Brück R, Diewald R, Hirth P, Kaiser FW (1995) Design criteria for metallic substrates for catalytic converters. SAE Trans 104:552–561

    Google Scholar 

  46. Pabst C, Feckler G, Schmitz S, Smirnova O, Capuano R, Hirth P, Fend T (2017) Experimental performance of an advanced metal volumetric air receiver for Solar Towers. Renew Energy 106:91–98

    Article  Google Scholar 

  47. Medina A, Sanchez-Orgaz S, Calvo Hernández A (2013) Solar-driven gas turbine power plants. In: International conference on renewable energies and power quality (ICREPQ 13). Bilbao (Spain)

    Google Scholar 

  48. Schwarzboezl P, Buck R, Sugarmen C, Ring A, Marcos Crespo MJ, Altwegg P, Enrile J (2006) Solar gas turbine systems: design, cost and perspectives. Sol Energy 80:1231–1240

    Article  CAS  Google Scholar 

  49. Haeger M, Keller L, Montereal R, Valverde A (1994) PHOEBUS technology Program Solar Air Receiver (TSA): experimental set-up for TSA at the CESATest facility of the Plataforma Solar de Almeria (PSA), pp 643–647

    Google Scholar 

  50. Avila-Marin AL, Alvarez-Laraa M, Fernandez-Reche J (2014) Experimental results of gradual porosity wire mesh absorber for volumetric receivers. Energy Procedia 49:275–283

    Article  CAS  Google Scholar 

  51. Muir JF, Hogan RE, Skocypec RD, Buck R (1994) Solar reforming of methane in a direct absorption catalytic reactor on a parabolic dish: test and analysis. Sol Energy 52:467–477

    Article  CAS  Google Scholar 

  52. Wörner A, Tamme R (1998) CO2 reforming of methane in a solar driven volumetric receiver–reactor. Catal Today 46:165–174

    Article  Google Scholar 

  53. Abele M, Bauer H, Buck R, Tamme R, Wörner A (1996) Design and test results of a receiver-reactor for solar methane reforming in solar engineering. In: Davidson JH, Chavez, J (eds) Solar engineering. American Society of Mechanical Engineers (ASTM), New York, pp 339–346

    Google Scholar 

  54. Möller S, Buck R, Tamme R, Epstein M, Liebermann D, Meri M, Fisher U, Rotstein A, Sugarmen C (2002) Solar production of syngas for electricity generation: SOLASYS project test-phase. In: 11th SolarPACES international symposium on concentrated solar power and chemical energy technologies, Zürich, Switzerland

    Google Scholar 

  55. Fend T, Reutter O, Pitz-Paal R, Hoffschmidt B, Bauer J (2004) Two novel high-porosity materials as volumetric receivers for concentrated solar radiation. Sol Energy Mater Sol Cells 84:291–304

    Article  CAS  Google Scholar 

  56. Poživil P, Aga V, Zagorskiy A, Steinfeld A (2014) A pressurized air receiver for solar-driven gas turbines. Energy Procedia 49:498–503

    Article  Google Scholar 

  57. Fend T, Hoffschmidt B, Pitz-Paal R, Reutter O, Rietbrock P (2004) Porous materials as open volumetric solar receivers: experimental determination of thermophysical and heat transfer properties. Energy 29:823–833

    Article  CAS  Google Scholar 

  58. Sattler C, Roeb M, Agrafiotis C, Thomey D (2017) Solar hydrogen production via sulphur based thermochemical water-splitting. Sol Energy 156:30–47

    Article  CAS  Google Scholar 

  59. Levy M, Rosin H, Levitan R (1989) Chemical reactions in a solar furnace by direct solar irradiation of the catalyst. J Sol Energy Eng 111:96

    Article  CAS  Google Scholar 

  60. Levy M, Rubin R, Rosin H, Levitan R (1992) Methane reforming by direct solar irradiation of the catalyst. Energy 17:749–756

    Article  CAS  Google Scholar 

  61. Fend T, Pitz-Paal R, Hoffschmidt B, Reutter O (2006) In: Scheffler M, Colombo P (eds) Cellular ceramics: structure, manufacturing, properties and applications. Wiley-VCH Verlag GmbH &Co, Weinheim, pp 523–546

    Google Scholar 

  62. Buck R, Muir JF, Hogan RE (1991) Carbon dioxide reforming of methane in a solar volumetric receiver/reactor: the CAESAR project. Sol Energy Mater 24:449–463

    Article  CAS  Google Scholar 

  63. Tamme R, Buck R, Epstein M, Fisher U, Sugarmen C (2001) Solar upgrading of fuels for generation of electricity. J Sol Energy Eng 123:160–163

    Article  CAS  Google Scholar 

  64. Möller S, Kaucic D, Sattler C (2006) Hydrogen production by solar reforming of natural gas: a comparison study of two possible process configurations. J Sol Energy Eng 128:16–23

    Article  CAS  Google Scholar 

  65. Meier A (2010) SolarPaces annual report – task II solar chemistry research

    Google Scholar 

  66. Thomey D, de Oliveira L, Säck J-P, Roeb M, Sattler C (2012) Development and test of a solar reactor for decomposition of sulphuric acid in thermochemical hydrogen production. Int J Hydrog Energy 37:16615–16622

    Article  CAS  Google Scholar 

  67. Thomey D, Roeb M, de Oliveira L, Gumpinger T, Schmücker M, et al (2010) Characterization of construction and catalyst materials for solar thermochemical hydrogen production, Karlsruhe, Germany

    Google Scholar 

  68. Roeb M, Sattler C, Klüser R, Monnerie N, de Oliveira L et al (2006) Solar hydrogen production by a two-step cycle based on mixed iron oxides. J Sol Energy Eng 128:125–133

    Article  CAS  Google Scholar 

  69. Gokon N, Hasegawa T, Takahashi S, Kodama T (2008) Thermochemical two-step water-splitting for hydrogen production using Fe-YSZ particles and a ceramic foam device. Energy 33:1407–1416

    Article  CAS  Google Scholar 

  70. Gokon N, Kodama T, Imaizumi N, Umeda J, Seo T (2011) Ferrite/zirconia-coated foam device prepared by spin coating for solar demonstration of thermochemical water-splitting. Int J Hydrog Energy 36:2014–2028

    Article  CAS  Google Scholar 

  71. Diver RB, Miller JE, Allendorf MD, Siegel NP, Hogan RE (2008) Solar thermochemical water-splitting ferrite-cycle heat engines. J Sol Energy Eng 130:41001–41008

    Article  CAS  Google Scholar 

  72. Miller J, Allendorf M, Diver R, Evans L, Siegel N et al (2008) Metal oxide composites and structures for ultra-high temperature solar thermochemical cycles. J Mater Sci 43:4714–4728

    Article  CAS  Google Scholar 

  73. Walker LS, Miller JE, Hilmas GE, Evans LR, Corral EL (2011) Coextrusion of zirconia–iron oxide honeycomb substrates for solar-based thermochemical generation of carbon monoxide for renewable fuels. Energy Fuel 26:712–721

    Article  CAS  Google Scholar 

  74. Roeb M, Monnerie N, Schmitz M, Sattler C, Konstandopoulos A, et al (2006) Thermo-chemical production of hydrogen from water by metal oxides fixed on ceramic substrates; 2006 June 13–16, Lyon, France

    Google Scholar 

  75. Roeb M, Säck JP, Rietbrock P, Prahl C, Schreiber H et al (2011) Test operation of a 100 kW pilot plant for solar hydrogen production from water on a solar tower. Sol Energy 85:634–644

    Article  CAS  Google Scholar 

  76. Roeb M, Neises M, Säck J-P, Rietbrock P, Monnerie N et al (2009) Operational strategy of a two-step thermochemical process for solar hydrogen production. Int J Hydrog Energy 34:4537–4545

    Article  CAS  Google Scholar 

  77. Houaijia A, Sattler C, Roeb M, Lange M, Breuer S et al (2013) Analysis and improvement of a high-efficiency solar cavity reactor design for a two-step thermochemical cycle for solar hydrogen production from water. Sol Energy 97:26–38

    Article  CAS  Google Scholar 

  78. Koepf E, Alxneit I, Wieckert C, Meier A (2017) A review of high temperature solar driven reactor technology: 25 years of experience in research and development at the Paul Scherrer Institute. Appl Energy 188:620–651

    Article  CAS  Google Scholar 

  79. Furler P, Scheffe J, Marxer D, Gorbar M, Bonk A et al (2014) Thermochemical CO2 splitting via redox cycling of ceria reticulated foam structures with dual-scale porosities. Phys Chem Chem Phys 16:10503–10511

    Article  CAS  Google Scholar 

  80. Marxer DA, Furler P, Scheffe JR, Geerlings H, Falter C et al (2015) Demonstration of the entire production chain to renewable kerosene via solar-thermochemical splitting of H2O and CO2. Energy Fuel 29:3241

    Article  CAS  Google Scholar 

  81. Furler P, Steinfeld A (2015) Heat transfer and fluid flow analysis of a 4 kW solar thermochemical reactor for ceria redox cycling. Chem Eng Sci 137:373–383

    Article  CAS  Google Scholar 

  82. Karagiannakis G, Pagkoura C, Konstandopoulos AG, Tescari S, Singh A, et al (2016) Thermochemical storage for CSP via redox structured reactors/heat exchangers: the RESTRUCTURE project. Proceedings of solarPACES, solar power and chemical energy systems. Abu Dhabi, United Arab Emirates

    Google Scholar 

  83. Agrafiotis C, Roeb M, Schmücker M, Sattler C (2015) Exploitation of thermochemical cycles based on solid oxide redox systems for thermochemical storage of solar heat. Part 2: redox oxide-coated porous ceramic structures as integrated thermochemical reactors/heat exchangers. Sol Energy 114:440–458

    Article  CAS  Google Scholar 

  84. Agrafiotis C, Tescari S, Roeb M, Schmücker M, Sattler C (2015) Exploitation of thermochemical cycles based on solid oxide redox systems for thermochemical storage of solar heat. Part 3: cobalt oxide monolithic porous structures as integrated thermochemical reactors/heat exchangers. Sol Energy 114:459–475

    Article  CAS  Google Scholar 

  85. Agrafiotis C, Becker A, Roeb M, Sattler C (2016) Exploitation of thermochemical cycles based on solid oxide redox systems for thermochemical storage of solar heat. Part 5: testing of porous ceramic honeycomb and foam cascades based on cobalt and manganese oxides for hybrid sensible/thermochemical heat storage. Sol Energy 139:676–694

    Article  CAS  Google Scholar 

  86. Pagkoura C, Karagiannakis G, Zygogianni A, Lorentzou S, Kostoglou M et al (2014) Cobalt oxide based structured bodies as redox thermochemical heat storage medium for future CSP plants. Sol Energy 108:146–163

    Article  CAS  Google Scholar 

  87. Pagkoura C, Karagiannakis G, Zygogianni A, Lorentzou S, Konstandopoulos AG (2015) Cobalt oxide based honeycombs as reactors/heat exchangers for redox thermochemical heat storage in future CSP plants. Energy Procedia 69:978–987

    Article  CAS  Google Scholar 

  88. Karagiannakis G, Pagkoura C, Halevas E, Baltzopoulou P, Konstandopoulos AG (2016) Cobalt/cobaltous oxide based honeycombs for thermochemical heat storage in future concentrated solar power installations: multi-cyclic assessment and semi-quantitative heat effects estimations. Sol Energy 133:394–407

    Article  CAS  Google Scholar 

  89. Singh A, Tescari S, Lantin G, Agrafiotis C, Roeb M et al (2017) Solar thermochemical heat storage via the Co3O4/CoO looping cycle: storage reactor modelling and experimental validation. Sol Energy 144:453–465

    Article  CAS  Google Scholar 

  90. Tescari S, Singh A, de Oliveira L, Breuer S, Agrafiotis C, et al 2016 Experimental proof of concept of a pilot-scale thermochemical storage unit; 2016 October 11th – 14th; Abu Dhabi, United Arab Emirates

    Google Scholar 

  91. Tescari S, Singh A, de Oliveira L, Breuer S, Agrafiotis C et al (2017) Experimental evaluation of a pilot-scale thermochemical storage system for a concentrated solar power plant. Appl Energy 189:66–75

    Article  CAS  Google Scholar 

  92. Haeger M (1994) Phoebus technology program: solar air receiver (TSA). CIEMAT, Madrid, Spain

    Google Scholar 

  93. Palero S, Romero M, Estrada CA (2003) Experimental investigation in small scale volumetric solar receivers to study the mass flow instability and its comparison to theoretical models. ISES Solar World Congress 2003, Göteborg, Sweden

    Google Scholar 

  94. Neumann A, Groer U (1996) Experimenting with concentrated sunlight using the DLR solar furnace. Sol Energy 58:181–190

    Article  Google Scholar 

  95. Garcia-Casals X, Ajona JI (1999) The duct selective volumetric receiver: potential for different selectivity strategies and stability issues. Sol Energy 67:265–268

    Article  Google Scholar 

  96. Kribus A, Ries H, Spirkl W (1996) Inherent limitations of volumetric receivers. Sol Energy Eng 118:151

    Article  Google Scholar 

  97. Palero SR, Manuel, Estrada CA, Castillo JL, Monterreal R, Fernandez-Reche J (2004) Experimental study of temperature distributions inside metallic monoliths used as volumetric solar absorbers. DGS-Munich and PSE-Freiburg. ISBN: 3-9809656-1-9

    Google Scholar 

  98. Capuano R (2017) Design of advanced porous geometry for open volumetric solar receiver based on numerical predictions. RWTH, Aachen

    Google Scholar 

  99. Fricke J, Borst L (1984) Energie. R. Oldenbourg Verlag, München

    Google Scholar 

  100. Säck J-P, Breuer S, Cotelli P, Houaijia A, Lange M et al (2016) High temperature hydrogen production: design of a 750 KW demonstration plant for a two step thermochemical cycle. Sol Energy 135:232–241

    Article  CAS  Google Scholar 

  101. Marxer D, Furler P, Takacs M, Steinfeld A (2017) Solar thermochemical splitting of CO2 into separate streams of CO and O2 with high selectivity, stability, conversion, and efficiency. Energy Environ Sci 10:1142–1149

    Article  CAS  Google Scholar 

  102. Agrafiotis C, Block T, Senholdt M, Tescari S, Roeb M et al (2017) Exploitation of thermochemical cycles based on solid oxide redox systems for thermochemical storage of solar heat. Part 6: testing of Mn-based combined oxides and porous structures. Sol Energy 149:227–244

    Article  CAS  Google Scholar 

  103. Zunft S, Hänel M, Krüger M, Dreißigacker V (2014) A design study for regenerator-type heat storage in solar tower plants–results and conclusions of the HOTSPOT project. Energy Procedia 49:1088–1096

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos Agrafiotis .

Editor information

Editors and Affiliations

Section Editor information

Nomenclature

A V [m2/m3]

Specific (heat transfer) surface area

CPF [J/kg]

Specific heat capacity

d H [m]

Characteristic length (e.g., pore diameter)

E [W/(m2nm)]

Direct normal spectral irradiance

I, I 0 [W/m2]

Solar radiation flux density

k [1/m]

Extinction coefficient

K 1 [m2]

Permeability, viscosity coefficient

K 2 [m]

Inertial coefficient

l, L [m]

Length

\( \dot{m} \) [kg/(s m2)]

Mass flow density

n PPI [n/inch]

Cell density of ceramic foams (pores per inch)

n [-]

Number of fibers

Nu [-]

Nusselt number

O FIBERS [m2]

Surface of the fibers

p [Pa]

Pressure

P 0 [-]

Porosity

PUSE [W]

Useful power

POA [W]

Power on aperture

\( \dot{q} \) [W/m2]

Heat flux density

\( \dot{Q} \) [W]

Heat flux

R [J/(kg K)]

specific gas constant

r [-]

Heat transfer/characteristic diameter exponent

T [°C] or [K]

Temperature

U 0 [m/s]

Fluid velocity outside the cellular body

V [m3]

Volume

x [m]

Coordinate

Α [W/(m2K)]

Convective heat transfer coefficient

Β [-]

Correction factor describing thermal losses

γ [-]

Angle of incidence

Ε [-]

Absorptivity, emissivity

Η [-]

Efficiency

Λ [m]

Wavelength

μ [Ns/m2]

Dynamic viscosity

ρ [kg/m3]

Density

ρ [-]

Spectral hemispherical reflectance

ρ 2πS [-]

Solar weighted hemispherical reflectance

σ [W/(m2 K4]

Stefan-Boltzmann-constant

Hemispherical

2πs

Solar weighted hemispherical

o

Superficial (in case of, e.g., U0: superficial velocity)

use

Useful

dyn

Dynamical

f

Fluid

s

Solid

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Agrafiotis, C., Fend, T., Roeb, M. (2021). Porous Materials for Solar Energy Harvesting, Transformation, and Storage. In: Meyers, R.A. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2493-6_1054-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2493-6_1054-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2493-6

  • Online ISBN: 978-1-4939-2493-6

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics