Skip to main content

Direct Capture of His6-Tagged Proteins Using Megaporous Cryogels Developed for Metal-Ion Affinity Chromatography

  • Protocol
Affinity Chromatography

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1286))

Abstract

Immobilized metal-ion affinity chromatography (IMAC) has been developed for the rapid isolation and purification of recombinant proteins. In this chapter, megaporous cryogels were synthesized having metal-ion affinity functionality, and their adsorptive properties were investigated. These cryogels have large pore sizes ranging from 10 to 100 μm with corresponding porosities between 80 and 90 %. The synthesized IMAC-cryogel had a total ligand density of 770 μmol/g. Twelve milligram of a His6-tagged protein (NAD(P)H-dependent 2-cyclohexen-1-one-reductase) can be purified from a crude cell extract per gram of IMAC-cryogels. The protein binding capacity is increased with higher degrees of grafting, although a slight decrease in column efficiency may result. This chapter provides methodologies for a rapid single-step purification of recombinant His6-tagged proteins from crude cell extracts using IMAC-cryogels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ervin MA, Luss D (1970) Effect of fouling on stability of adiabatic packed bed reactors. AlChE J 16:979–984

    Article  Google Scholar 

  2. Siu S, Baldascini H, Hearle D, Hoare M, Tichener-Hooker NJ (2006) Effect of fouling on the capacity and breakthrough characteristics of a packed bed ion exchange chromatography column. Bioprocess Biosyst Eng 28:405–414

    Article  CAS  PubMed  Google Scholar 

  3. Bibi NS, Gavara PR, Espinosa SLS, Grasselli M, Fernández-Lahore M (2011) Synthesis and performance of 3D-megaporous structures for enzyme immobilization and protein capture. Biotechnol Prog 27:1329–1338

    Article  CAS  PubMed  Google Scholar 

  4. Hedström M, Plieva F, Galaev IY, Mattiasson B (2008) Monolithic macroporous albumin/chitosan cryogel structure: a new matrix for enzyme immobilization. Anal Bioanal Chem 390:907–912

    Article  PubMed  Google Scholar 

  5. Lozinsky VI (2008) Polymeric cryogels as a new family of macroporous and supermacroporous materials for biotechnological purposes. Russ Chem Bull 57:1015–1032

    Article  CAS  Google Scholar 

  6. Plieva FM, Galaev IY, Mattiasson B (2007) Macroporous gels prepared at subzero temperatures as novel materials for chromatography of particulate-containing fluids and cell culture applications. J Sep Sci 30:1657–1671

    Article  CAS  PubMed  Google Scholar 

  7. Plieva FM, Galaev IY, Noppe W, Mattiasson B (2008) Cryogel applications in microbiology. Trends Microbiol 16:543–551

    Article  CAS  PubMed  Google Scholar 

  8. Plieva FM, Kirsebom H, Mattiasson B (2011) Preparation of macroporous cryostructurated gel monoliths, their characterization and main applications. J Sep Sci 34:2164–2172

    CAS  PubMed  Google Scholar 

  9. Arvidsson P, Plieva FM, Savina IN, Lozinsky VI, Fexby S, Bulow L, Galaev IY, Mattiasson B (2002) Chromatography of microbial cells using continuous supermacroporous affinity and ion-exchange columns. J Chromatogr A 977:27–38

    Article  CAS  PubMed  Google Scholar 

  10. Du K-F, Yang D, Sun Y (2007) Fabrication of high-permeability and high-capacity monolith for protein chromatography. J Chromatogr A 1163:212–218

    Article  CAS  PubMed  Google Scholar 

  11. Yao K, Shen S, Yun J, Wang LH, He XJ, Yu XM (2006) Preparation of polyacrylamide-based supermacroporous monolithic cryogel beds under freezing-temperature variation conditions. Chem Eng Sci 61:6701–6708

    Article  CAS  Google Scholar 

  12. Yao K, Yun J, Shen S, Chen F (2007) In-situ graft-polymerization preparation of cation-exchange supermacroporous cryogel with sulfo groups in glass columns. J Chromatogr A 1157:246–251

    Article  CAS  PubMed  Google Scholar 

  13. Yao K, Yun J, Shen S, Wang LH, He XJ, Yu XM (2006) Characterization of a novel continuous supermacroporous monolithic cryogel embedded with nanoparticles for protein chromatography. J Chromatogr A 1109:103–110

    Article  CAS  PubMed  Google Scholar 

  14. Arvidsson P, Plieva FM, Lozinsky VI, Galaev IV, Mattiasson B (2003) Direct chromatographic capture of enzyme from crude homogenate using immobilized metal affinity chromatography on a continuous supermacroporous adsorbent. J Chromatogr A 986:275–290

    Article  CAS  PubMed  Google Scholar 

  15. Chaga GS (2001) Twenty-five years of immobilized metal ion affinity chromatography: past, present and future. J Biochem Biophys Methods 49:313–334

    Article  CAS  PubMed  Google Scholar 

  16. Gutiérrez R, Martín del Valle EM, Galán MA (2007) Immobilized metal‐ion affinity chromatography: status and trends. Sep Purif Rev 36:71–111

    Article  Google Scholar 

  17. Porath J (1992) Immobilized metal ion affinity chromatography. Protein Express Purif 3:263–281

    Article  CAS  Google Scholar 

  18. Arnold FH (1991) Metal-affinity separations: a new dimension in protein processing. Nat Biotechnol 9:151–156

    Article  CAS  Google Scholar 

  19. Pearson RG (1990) Hard and soft acids and bases – the evolution of a chemical concept. Coord Chem Rev 100:403–425

    Article  CAS  Google Scholar 

  20. Bibi NS, Singh NK, Dsouza RN, Aasim M, Fernández-Lahore M (2013) Synthesis and performance of megaporous immobilized metal-ion affinity cryogels for recombinant protein capture and purification. J Chromatogr A 1272:145–149

    Article  CAS  PubMed  Google Scholar 

  21. Rohde BH, Schmid R, Ullrich MS (1999) Thermoregulated expression and characterization of an NAD(P)H-dependent 2-cyclohexen-1-one reductase in the plant pathogenic bacterium Pseudomonas syringae pv. glycinea. J Bacteriol 181:814–822

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Levitzki A, Pecht I, Berger A (1972) Copper-poly-L-histidine complexes. II. Physicochemical properties. J Am Chem Soc 94:6844–6849

    Article  CAS  PubMed  Google Scholar 

  23. Gallagher SR (2008) SDS-polyacrylamide gel electrophoresis (SDS-PAGE). Current protocols essential laboratory techniques. Wiley, Hoboken, NJ, pp 7.3.1–7.3.25

    Book  Google Scholar 

  24. Kruger N (1994) The Bradford Method for Protein Quantitation. In: Walker J (ed) Basic protein and peptide protocols. Methods in molecular biology™, vol 32. Humana, Totowa, NJ, pp 9–15

    Chapter  Google Scholar 

  25. Gibbins J (2004) Techniques for Analysis of Proteins by SDS-Polyacrylamide Gel Electrophoresis and Western Blotting. In: Gibbins J, Mahaut-Smith M (eds) Platelets and megakaryocytes. Methods in molecular biology™, vol 273. Humana, Totowa, NJ, pp 139–151

    Chapter  Google Scholar 

  26. D'Souza F, Lali A (1999) Purification of papain by immobilized metal affinity chromatography (IMAC) on chelating carboxymethyl cellulose. Biotechnol Tech 13:59–63

    Google Scholar 

  27. Singh NK, Dsouza RN, Grasselli M, FernÃndez-Lahore M (2013) High capacity cryogel-type adsorbents for protein purification. J Chromatogr A 1355:143–148

    Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Matthias S. Ullrich for providing cells carrying the Ncr gene for the production of the His6-tagged protein. M.F.L. is a member of the National Council for Science and Technology, Buenos Aires, Argentina. This work was funded by the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 312004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Fernández-Lahore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Singh, N.K., DSouza, R.N., Bibi, N.S., Fernández-Lahore, M. (2015). Direct Capture of His6-Tagged Proteins Using Megaporous Cryogels Developed for Metal-Ion Affinity Chromatography. In: Reichelt, S. (eds) Affinity Chromatography. Methods in Molecular Biology, vol 1286. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2447-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2447-9_16

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2446-2

  • Online ISBN: 978-1-4939-2447-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics